| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IF | IP            |                              |                      | 1/26             |

# A BLOCK PARALLEL MAJORIZE-MINIMIZE MEMORY GRADIENT ALGORITHM

#### Emilie Chouzenoux, LIGM, UPEM

(joint work with Sara Cadoni, Jean-Christophe Pesquet and Caroline Chaux)

Séminaire Parisien des Mathématiques Appliquées à l'Imagerie

Institut Henri Poincaré

3 November 2016





| Introduction<br>●○○   | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | IP            |                              |                      | 2/26             |

# Inverse problems and large scale optimization



#### Original image



#### Degraded image







| Introduction<br>●○○   | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | IP            |                              |                      | 2/26             |

# Inverse problems and large scale optimization



Original image $\overline{oldsymbol{x}} \in \mathbb{R}^N$ 



Degraded image $oldsymbol{y} = \mathcal{D}(oldsymbol{H}\overline{oldsymbol{x}}) \in \mathbb{R}^M$ 

- ► H ∈ ℝ<sup>M×N</sup>: matrix associated with the degradation operator.
- $\mathcal{D}: \mathbb{R}^M \to \mathbb{R}^M$ : noise degradation.

How to find a good estimate of  $\overline{x}$  from the observations y and the model H in the context of large scale processing?

| Introduction       | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion |
|--------------------|---------------|------------------------------|----------------------|------------|
| Imaging in Paris - | IHP           |                              |                      | 3/26       |

# Inverse problems and large scale optimization

#### Variational approach:

An image estimate  $\hat{m{x}} \in \mathbb{R}^N$  is generated by minimizing

$$(\forall \boldsymbol{x} \in \mathbb{R}^N) \quad F(\boldsymbol{x}) = \sum_{s=1}^S f_s(\boldsymbol{L}_s \boldsymbol{x})$$

with  $f_s : \mathbb{R}^{P_s} \to \mathbb{R}$ ,  $\boldsymbol{L}_s \in \mathbb{R}^{P_s \times N}$ ,  $P_s > 0$ .

In the context of maximum a posteriori estimation :

- $L_1$ : Degradation operator, i.e. H;
- f<sub>1</sub>: Data fidelity (e.g. least squares);
- (f<sub>s</sub>)<sub>2≤s≤S</sub>: Regularization functions on some linear transforms (L<sub>s</sub>)<sub>2≤s≤S</sub> of the sought solution.

 $\rightarrow$  Often no closed form expression or solution expensive to compute (especially in large scale context).

▶ Need for an efficient iterative minimization strategy !

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion |
|-----------------------|---------------|------------------------------|----------------------|------------|
| 000                   | 000000        | 000000                       | 000000               | 00         |
| Imaging in Paris - IH | P             |                              |                      | 4/26       |

# Outline

#### \* MAJORIZE-MINIMIZE MEMORY GRADIENT ALGORITHM

- Majorize-Minimize principle
- Subspace acceleration
- Convergence theorem

#### \* BLOCK PARALLEL 3MG ALGORITHM

- Block alternating 3MG
- Block separable majorant
- Practical implementation
- Convergence theorem

#### APPLICATION TO 3D DECONVOLUTION

- Variational approach
- Parallel implementation
- Numerical results

| Introduction       | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion |
|--------------------|---------------|------------------------------|----------------------|------------|
| 000                | ●00000        | 0000000                      | 0000000              | 00         |
| Imaging in Paris - | IHP           |                              |                      | 5/26       |

# Majorize-Minimize Memory Gradient algorithm

| Introduction          | 3MG Algorithm<br>○●○○○○ | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|-------------------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | P                       |                              |                      | 6/26             |

# Majorize-Minimize principle

1. Find a tractable surrogate for  $F \rightsquigarrow$  Majorization step



| Introduction          | 3MG Algorithm<br>○●○○○○ | Block Parallel 3MG Algorithm | Experimental results | Conclusion |
|-----------------------|-------------------------|------------------------------|----------------------|------------|
| Imaging in Paris - IH | Р                       |                              |                      | 6/26       |

# Majorize-Minimize principle

1. Find a tractable surrogate for  $F \rightsquigarrow$  Majorization step

 $\rightsquigarrow$  Quadratic tangent majorant of F at  $oldsymbol{x}_k$ 

$$\begin{aligned} (\forall \boldsymbol{x} \in \mathbb{R}^N) \quad & \boldsymbol{Q}(\boldsymbol{x}, \boldsymbol{x}_k) = F(\boldsymbol{x}_k) + \nabla F(\boldsymbol{x}_k)^\top (\boldsymbol{x} - \boldsymbol{x}_k) \\ & \quad + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_k)^\top \boldsymbol{A}(\boldsymbol{x}_k) (\boldsymbol{x} - \boldsymbol{x}_k) \end{aligned}$$

where, for every  $x \in \mathbb{R}^N$ ,  $A(x) \in \mathbb{R}^{N \times N}$  is a symmetric definite positive matrix such that

$$(\forall \boldsymbol{x} \in \mathbb{R}^N) \quad Q(\boldsymbol{x}, \boldsymbol{x}_k) \ge F(\boldsymbol{x}).$$

\* Several methods available to construct matrix A(x) in the context of inverse problems in image processing.

| Introduction          | 3MG Algorithm<br>○○●○○○ | Block Parallel 3MG Algorithm | Experimental results | Conclusion |
|-----------------------|-------------------------|------------------------------|----------------------|------------|
| Imaging in Paris - IH | Р                       |                              |                      | 7/26       |

# Subspace acceleration

2. Minimize in a subspace  $\rightsquigarrow$  Minimization step

$$(\forall k \in \mathbb{N}^*)$$
  $\boldsymbol{x}_{k+1} \in \operatorname{Argmin}_{\boldsymbol{x} \in \operatorname{ran} \boldsymbol{D}_k} Q(\boldsymbol{x}, \boldsymbol{x}_k),$ 

with  $D_k \in \mathbb{R}^{N \times M_k}$ . • ran  $D_k = \mathbb{R}^N \Rightarrow$  half-quadratic algorithm. •  $M_k$  small  $\Rightarrow$  low-complexity per iteration.

#### Memory-Gradient subspace:

$$\boldsymbol{D}_k = \begin{cases} [-\nabla F(\boldsymbol{x}_k), \boldsymbol{x}_k - \boldsymbol{x}_{k-1}] & \text{if } k \ge 1 \\ -\nabla F(\boldsymbol{x}_0) & \text{if } k = 0 \end{cases}$$

→ **3MG** algorithm

(similar ideas in NLCG, L-BFGS, TWIST, FISTA, ...)

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion |
|-----------------------|---------------|------------------------------|----------------------|------------|
| 000                   | 000000        | 0000000                      | 0000000              | 00         |
| Imaging in Paris - IH | Р             |                              |                      | 8/26       |

# 3MG algorithm

Initialize 
$$\boldsymbol{x}_0 \in \mathbb{R}^N$$
  
For  $k = 0, 1, 2, ...$   
Compute  $\nabla F(\boldsymbol{x}_k)$   
If  $k = 0$   
 $\lfloor \boldsymbol{D}_k = -\nabla F(\boldsymbol{x}_0)$   
Else  
 $\lfloor \boldsymbol{D}_k = [-\nabla F(\boldsymbol{x}_k), \boldsymbol{x}_k - \boldsymbol{x}_{k-1}]$   
 $\boldsymbol{S}_k = \boldsymbol{D}_k^\top \boldsymbol{A}(\boldsymbol{x}_k) \boldsymbol{D}_k$   
 $\boldsymbol{u}_k = \boldsymbol{S}_k^\dagger \boldsymbol{D}_k^\top \nabla F(\boldsymbol{x}_k)$   
 $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{D}_k \boldsymbol{u}_k$ 

→ Low computational cost since  $S_k$  is of dimension  $M_k \times M_k$ , with  $M_k \in \{1, 2\}$ . → Complexity reductions possible by taking into account the structures of F and  $D_k$ .

| Introduction          | 3MG Algorithm<br>○○○○●○ | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|-------------------------|------------------------------|----------------------|------------------|
| Imaging in Paris - II | ΗP                      |                              |                      | 9/26             |

# Convergence theorem

#### Let assume that:

- 1.  $F : \mathbb{R}^N \to \mathbb{R}$  is a coercive, differentiable function.
- 2. There exists  $(\underline{\nu}, \overline{\nu}) \in ]0, +\infty[^2 \text{ such that } (\forall k \in \mathbb{N}) \\ \underline{\nu} \operatorname{Id} \preceq A(\boldsymbol{x}_k) \preceq \overline{\nu} \operatorname{Id},$

#### Then, the following hold:

- $\|\nabla F(\boldsymbol{x}_k)\| \to 0$  and  $F(\boldsymbol{x}_k) \searrow F(\widehat{\boldsymbol{x}})$  where  $\widehat{\boldsymbol{x}}$  is a critical point of *F*.
- If *F* is convex, any sequential cluster point of (*x<sub>k</sub>*)<sub>k∈ℕ</sub> is a minimizer of *F*.
- If F is strongly convex, then  $({\bm x}_k)_{k\in\mathbb{N}}$  converges to the unique (global) minimizer  $\widehat{{\bm x}}$  of F
- If *F* satisfies the Kurdyka-Łojasiewicz inequality, then the sequence (*x<sub>k</sub>*)<sub>k∈ℕ</sub> converges to a critical point of *F*.

| Introduction          | 3MG Algorithm<br>○○○○○● | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|-------------------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | Р                       |                              |                      | 10/26            |

# 3MG in practical situations

3MG algorithm outperforms state-of-the arts optimization algorithms in many image processing applications.

#### Problem: Computational issues with very large-size problems.

#### Main reasons:

- ► High computational time for calculating the gradient direction  $\nabla F(\mathbf{x}_k)$  and the matrix  $\mathbf{S}_k = \mathbf{D}_k^\top \mathbf{A}(\mathbf{x}_k)\mathbf{D}_k$ ;
- High storage cost for  $\nabla F(\boldsymbol{x}_k)$ ,  $\boldsymbol{D}_k$  and  $\boldsymbol{x}_k$ .

# $\downarrow$ Block parallel approach

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion |
|-----------------------|---------------|------------------------------|----------------------|------------|
| 000                   | 000000        | ●000000                      | 0000000              | 00         |
| Imaging in Paris - IH | Ρ             |                              |                      | 11/26      |

# Block parallel 3MG algorithm

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | P             |                              |                      | 12/26            |

# Block parallel strategy

The vector of unknowns x is partitioned into **block subsets**. At each iteration, **some** blocks are updated in **parallel**.

#### Advantages:

- Control of the memory thanks to the block alternating strategy;
- Reduction of the computational time thanks to the parallel procedure.



| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | Р             |                              |                      | 13/26            |

**1. Select a block subset:** Choose a non empty  $S_k \subset \{1, \ldots, J\}$ .

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | P             |                              |                      | 13/26            |

- **1. Select a block subset:** Choose a non empty  $S_k \subset \{1, \ldots, J\}$ .
- 2. Find a tractable surrogate in this subset:

 $\rightsquigarrow$  Set  $A^{(\mathcal{S}_k)}(x_k) = ([A(x_k)]_{p,p})_{p \in \mathbb{S}_k}$ . The restriction of F to  $\mathcal{S}_k$  is majorized at  $x_k$  by

$$\begin{aligned} (\forall \boldsymbol{v} \in \mathbb{R}^{|\mathbb{S}_k|}) \quad Q^{(\mathcal{S}_k)}(\boldsymbol{v}, \boldsymbol{x}_k) &= F(\boldsymbol{x}_k) + \nabla F^{(\mathcal{S}_k)}(\boldsymbol{x}_k)^\top (\boldsymbol{v} - \boldsymbol{x}_k^{(\mathcal{S}_k)}) \\ &+ \frac{1}{2} (\boldsymbol{v} - \boldsymbol{x}_k^{(\mathcal{S}_k)})^\top \boldsymbol{A}^{(\mathcal{S}_k)}(\boldsymbol{x}_k) (\boldsymbol{v} - \boldsymbol{x}_k^{(\mathcal{S}_k)}). \end{aligned}$$

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | P             |                              |                      | 13/26            |

- **1. Select a block subset:** Choose a non empty  $S_k \subset \{1, \ldots, J\}$ .
- 2. Find a tractable surrogate in this subset:

 $\rightsquigarrow \mathsf{Set} \, \boldsymbol{A}^{(\mathcal{S}_k)}(\boldsymbol{x}_k) = \left( [\boldsymbol{A}(\boldsymbol{x}_k)]_{p,p} \right)_{p \in \mathbb{S}_k}. \text{ The restriction of } F \text{ to } \mathcal{S}_k \text{ is majorized at } \boldsymbol{x}_k \text{ by}$ 

$$\begin{aligned} (\forall \boldsymbol{v} \in \mathbb{R}^{|\mathbb{S}_k|}) \quad Q^{(\mathcal{S}_k)}(\boldsymbol{v}, \boldsymbol{x}_k) &= F(\boldsymbol{x}_k) + \nabla F^{(\mathcal{S}_k)}(\boldsymbol{x}_k)^\top (\boldsymbol{v} - \boldsymbol{x}_k^{(\mathcal{S}_k)}) \\ &+ \frac{1}{2} (\boldsymbol{v} - \boldsymbol{x}_k^{(\mathcal{S}_k)})^\top \boldsymbol{A}^{(\mathcal{S}_k)}(\boldsymbol{x}_k) (\boldsymbol{v} - \boldsymbol{x}_k^{(\mathcal{S}_k)}). \end{aligned}$$

#### 3. Minimize within the memory gradient subspace

$$\boldsymbol{x}_{k+1}^{(\mathcal{S}_k)} = \operatorname*{Argmin}_{\boldsymbol{v} \in \operatorname{ran} \boldsymbol{D}_k^{(\mathcal{S}_k)}} Q^{(\mathcal{S}_k)}(\boldsymbol{v}, \boldsymbol{x}_k)$$

where

$$(\forall j \in \mathcal{S}_k) \quad \boldsymbol{D}_k^{(j)} = \begin{cases} -\nabla F^{(j)}(\boldsymbol{x}_k) & \text{if } j \notin \bigcup_{\ell=0}^{k-1} \mathcal{S}_\ell, \\ \big[ -\nabla F^{(j)}(\boldsymbol{x}_k) \big| \boldsymbol{x}_k^{(j)} - \boldsymbol{x}_{k-1}^{(j)} \big] & \text{otherwise.} \end{cases}$$

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | Р             |                              |                      | 13/26            |

- **1. Select a block subset:** Choose a non empty  $S_k \subset \{1, \ldots, J\}$ .
- 2. Find a tractable surrogate in this subset:

 $\rightsquigarrow$  Set  $A^{(\mathcal{S}_k)}(x_k) = ([A(x_k)]_{p,p})_{p \in \mathbb{S}_k}$ . The restriction of F to  $\mathcal{S}_k$  is majorized at  $x_k$  by

$$\begin{aligned} (\forall \boldsymbol{v} \in \mathbb{R}^{|\mathbb{S}_k|}) \quad Q^{(\mathcal{S}_k)}(\boldsymbol{v}, \boldsymbol{x}_k) &= F(\boldsymbol{x}_k) + \nabla F^{(\mathcal{S}_k)}(\boldsymbol{x}_k)^\top (\boldsymbol{v} - \boldsymbol{x}_k^{(\mathcal{S}_k)}) \\ &+ \frac{1}{2} (\boldsymbol{v} - \boldsymbol{x}_k^{(\mathcal{S}_k)})^\top \boldsymbol{A}^{(\mathcal{S}_k)}(\boldsymbol{x}_k) (\boldsymbol{v} - \boldsymbol{x}_k^{(\mathcal{S}_k)}). \end{aligned}$$

#### 3. Minimize within the memory gradient subspace

$$\boldsymbol{x}_{k+1}^{(\mathcal{S}_k)} = \operatorname*{Argmin}_{\boldsymbol{v} \in \operatorname{ran} \boldsymbol{D}_k^{(\mathcal{S}_k)}} Q^{(\mathcal{S}_k)}(\boldsymbol{v}, \boldsymbol{x}_k)$$

where

$$(\forall j \in \mathcal{S}_k) \quad \boldsymbol{D}_k^{(j)} = \begin{cases} -\nabla F^{(j)}(\boldsymbol{x}_k) & \text{if } j \notin \bigcup_{\ell=0}^{k-1} \mathcal{S}_\ell, \\ [-\nabla F^{(j)}(\boldsymbol{x}_k) | \boldsymbol{x}_k^{(j)} - \boldsymbol{x}_{k-1}^{(j)}] & \text{otherwise.} \end{cases}$$

Problem: Matrices  $A^{(S)}$  do not have any block diagonal structure  $\implies$  Difficult to perform **Step 3** in parallel !

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion |
|-----------------------|---------------|------------------------------|----------------------|------------|
| Imaging in Paris - IH | P             |                              |                      | 14/26      |

## Block separable majorant matrix

Let us assume that:

$$(orall oldsymbol{x} \in \mathbb{R}^N) \quad oldsymbol{A}(oldsymbol{x}) = \sum_{s=1}^S oldsymbol{L}_s^ op \operatorname{Diag} \left\{ oldsymbol{\omega}_s(oldsymbol{L}_soldsymbol{x}) 
ight\} oldsymbol{L}_s,$$

Let  $\mathcal{S} \subset \{1, \dots, J\}$  non empty. Then,

$$(\forall \boldsymbol{x} \in \mathbb{R}^N) \quad \boldsymbol{A}^{(\mathcal{S})}(\boldsymbol{x}) \underline{\prec} \boldsymbol{B}^{(\mathcal{S})}(\boldsymbol{x}) = \mathrm{BDiag}\Big\{ \big(\boldsymbol{B}^{(j)}(\boldsymbol{x})\big)_{j \in \mathcal{S}} \Big\},$$

where, for every  $j \in S$ , matrix  $\boldsymbol{B}^{(j)}(\boldsymbol{x}) \in \mathbb{R}^{N_j \times N_j}$  is given by:

$$\boldsymbol{B}^{(j)}(\boldsymbol{x}) = \sum_{s=1}^{S} \left( (\boldsymbol{L}_{s}^{(j)})^{\top} \operatorname{Diag} \left\{ \boldsymbol{b}_{s}(\boldsymbol{L}_{s}\boldsymbol{x}) \right\} \boldsymbol{L}_{s}^{(j)} \right),$$

with, for every  $s \in \{1, \ldots, S\}$  and  $p \in \{1, \ldots, P_s\}$ ,

$$[\boldsymbol{b}_s(\boldsymbol{L}_s\boldsymbol{x})]_p = [\boldsymbol{\omega}_s(\boldsymbol{L}_s\boldsymbol{x})]_p [|\boldsymbol{L}_s^{(\mathcal{S})}|\boldsymbol{1}_{|\mathbb{S}|}]_p / [|\boldsymbol{L}_s^{(j)}|\boldsymbol{1}_{N_j}]_p.$$

**Proof:** Rely on Jensen's inequality.

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | IP            |                              |                      | 15/26            |

# BP3MG Algorithm

Initialize  $x_0 \in \mathbb{R}^N$ For  $k = 0, 1, 2, \ldots$ **Select**  $\mathcal{S}_k \subset \{1, \ldots, J\}$  s.t.  $|\mathcal{S}_k| = C$ **Parfor**  $j \in S_k$ Compute  $\mathbf{V}_{k}$ Compute  $\mathbf{B}_{k}^{(j)}(\mathbf{x}_{k})$ Construct  $\mathbf{D}_{k}^{(j)}$ Compute  $\nabla F^{(j)}(\boldsymbol{x}_k)$  $\left| \begin{array}{c} \mathbf{u}_{k}^{(j)} = -\left( (\boldsymbol{D}_{k}^{(j)})^{\top} \boldsymbol{B}_{k}^{(j)} (\boldsymbol{x}_{k}) \boldsymbol{D}_{k}^{(j)} \right)^{\dagger} (\boldsymbol{D}_{k}^{(j)})^{\top} \nabla F^{(j)} (\boldsymbol{x}_{k}) \\ \mathbf{x}_{k+1}^{(j)} = \mathbf{x}_{k}^{(j)} + \boldsymbol{D}_{k}^{(j)} \boldsymbol{u}_{k}^{(j)} \end{array} \right|$ Set, for every  $j \in \{1, \ldots, J\} \setminus \mathcal{S}_k$ ,  $x_{k+1}^{(j)} = x_k^{(j)}$ . Share  $(x_{k+1}^{(j)})_{j \in S_k}$  between all cores.

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | P             |                              |                      | 16/26            |

# Practical implementation

In practice, it is usually not necessary to send the full vector  $x_{k+1}$  to all the cores, at each iteration k.

► The update of the *j*-th block only require the knowledge of the current iterate at indices

$$\mathcal{N}_{j} = \bigcup_{s=1}^{S} \left\{ n \in \{1, \dots, N\} | (\exists p \in \mathcal{P}_{s,j}) \ [\mathbf{L}_{s}]_{p,n} \neq 0 \right\},\$$

where  $\mathcal{P}_{s,j} = \{p \in \{1, \dots, P_s\} | (\exists i \in \mathbb{J}_j) [\mathbf{L}_s]_{p,i} \neq 0\}.$ 

\* The cardinality of  $\mathcal{N}_j$  is usually very small with respect to N.

**Example:** S = 1 and  $L_1$  is a discrete gradient operator with one pixel neighborhood  $\Rightarrow |\mathcal{N}_j| = 3$ .

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - II | ΗP            |                              |                      | 17/26            |

# Convergence theorem (ongoing work)

Let assume that:

- 1.  $F : \mathbb{R}^N \to \mathbb{R}$  is a coercive, differentiable function.
- 2. There exists a constant  $K \ge J$  such that, for every  $k \in \mathbb{N}$ ,  $\{1, \ldots, J\} \subset \bigcup_{\ell=k}^{k+K-1} S_{\ell}$ .
- 3. There exists  $(\underline{\nu}, \overline{\nu}) \in ]0, +\infty[^2 \text{ such that } (\forall k \in \mathbb{N}) \\ \underline{\nu} \operatorname{Id} \preceq B^{(\mathcal{S}_k)}(\boldsymbol{x}_k) \preceq \overline{\nu} \operatorname{Id},$

Then, the following hold:

- $\|\nabla F(\boldsymbol{x}_k)\| \to 0$  and  $F(\boldsymbol{x}_k) \searrow F(\hat{\boldsymbol{x}})$  where  $\hat{\boldsymbol{x}}$  is a critical point of *F*.
- If *F* is convex, any sequential cluster point of (*x<sub>k</sub>*)<sub>k∈ℕ</sub> is a minimizer of *F*.
- If *F* is strongly convex, then (*x<sub>k</sub>*)<sub>k∈ℕ</sub> converges to the unique (global) minimizer *x̂* of *F*

| Introduction         | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion |
|----------------------|---------------|------------------------------|----------------------|------------|
| Imaging in Paris - I | HP            |                              | •000000              | 18/26      |

# Application to 3D image deconvolution

| Introduction           | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion |
|------------------------|---------------|------------------------------|----------------------|------------|
| Imaging in Paris - IHI | P             |                              |                      | 19/26      |

## Problem statement



*H*: 3D convolution operator representing depth-variant 3D Gaussian blur (kernel size 5 × 5 × 11). For each depth z ∈ {1,..., N<sub>Z</sub>}, different variance and rotation parameters.
 *b*: additive Gaussian i.i.d. zero-mean noise.

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - II | HP            |                              |                      | 20/26            |

# Variational approach

Objective function  $(\forall x \in \mathbb{R}^N) \quad F(x) = \frac{1}{2} \| Hx - y \|^2 + R(x)$ 

 $\rightsquigarrow$  Hybrid penalization term  $R = R_1 + R_2 + R_3$ :

• 
$$R_1(\boldsymbol{x}) = \eta \sum_{n=1}^{N} d_{[x_{\min}, x_{\max}]}^2(\boldsymbol{x}_n)$$
  
•  $R_2(\boldsymbol{x}) = \lambda \sum_{n=1}^{N} \sqrt{([\boldsymbol{V}^{\mathsf{X}} \boldsymbol{x}]_n)^2 + ([\boldsymbol{V}^{\mathsf{Y}} \boldsymbol{x}]_n)^2 + \delta^2}$   
•  $R_3(\boldsymbol{x}) = \kappa \sum_{n=1}^{N} ([\boldsymbol{V}^{\mathsf{Z}} \boldsymbol{x}])^2$ 

- $(\eta, \lambda, \delta, \kappa) \in (0, +\infty)^4$ : regularization parameters;
- $[x_{\min}, x_{\max}]$ : range of pixel intensity values;  $d_C$ : distance to set C;
- $V^{X}, V^{Y}, V^{Z} \in \mathbb{R}^{N \times N}$ : discrete gradients along X,Y and Z.

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion |
|-----------------------|---------------|------------------------------|----------------------|------------|
| 000                   | 000000        | 000000                       | 000000               | 00         |
| Imaging in Paris - IH | P             |                              |                      | 21/26      |

# Parallel implementation

- Blocks: N<sub>Z</sub> slices of the 3D volume.
- Message Passing Interface command SPMD of MATLAB<sup>®</sup>
- Master-Slave implementation:
  - → 1 master core:

Main loop of the algorithm.

 $\rightarrow$   $\overline{C}$  slave cores:

Perform their tasks simultaneously.

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion |
|-----------------------|---------------|------------------------------|----------------------|------------|
| Imaging in Paris - IH | P             |                              |                      | 21/26      |

# Parallel implementation

- Blocks: N<sub>Z</sub> slices of the 3D volume.
- Message Passing Interface command SPMD of MATLAB<sup>®</sup>
- Master-Slave implementation:
  - → 1 master core:

Main loop of the algorithm.

 $\rightarrow \overline{C}$  slave cores:

Perform their tasks simultaneously.



| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion |
|-----------------------|---------------|------------------------------|----------------------|------------|
| Imaging in Paris - IH | P             |                              |                      | 21/26      |

# Parallel implementation

- Blocks: N<sub>Z</sub> slices of the 3D volume.
- Message Passing Interface command SPMD of MATLAB<sup>®</sup>
- Master-Slave implementation:
  - → 1 master core:

Main loop of the algorithm.

 $\rightarrow \overline{C}$  slave cores:

Perform their tasks simultaneously.

Iteration k + 1Slave 1 Slave 2 Slave 3 Slave 4

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | P             |                              |                      | 22/26            |

# Restoration results: FlyBrain



(a) Original

(b) Degraded

(c) Restored

Images corresponding to slice z = 18 of the 3D volume FlyBrain ( $256 \times 256 \times 48$ ). Initial SNR 13.42 dB. Final SNR 16.98 dB.

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | IP            |                              |                      | 23/26            |

# Restoration results: Tube



(a) Original



(b) Degraded



(c) Restored

Images corresponding to slice z = 31 of the 3D volume Tube ( $284 \times 280 \times 48$ ). Initial SNR 11.53 dB. Final SNR 14.47 dB.

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>00 |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | P             |                              |                      | 24/26            |

# Acceleration



Ratio between the computation time for one core and the computation time for  $\overline{C}$  cores (+) with linear fitting (···).

| Introduction           | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>●○ |
|------------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IHI | 2             |                              |                      | 25/26            |

# Conclusion

The *Block Parallel Majorize-Minimize Memory Gradient (BP3MG) Algorithm* handles smooth optimization problems of very large dimension.

- ✓ Reduced complexity / memory requirement.
- $\checkmark$  High efficiency in the context of 3D image restoration.
- ✓ Great potential for parallelization.

~ Future work will involve implementation in other languages.

| Introduction          | 3MG Algorithm | Block Parallel 3MG Algorithm | Experimental results | Conclusion<br>0• |
|-----------------------|---------------|------------------------------|----------------------|------------------|
| Imaging in Paris - IH | P             |                              |                      | 26/26            |

## Some references

S. Cadoni, E. Chouzenoux, J.-C. Pesquet, C. Chaux. *A Block Parallel Majorize-Minimize Memory Gradient Algorithm.* In Proc. IEEE Conf. Image Process. (ICIP 2016), pp. 3194–3198, Phoenix, AZ, 25-28 Sep 2016. Best paper award finalist.



#### E. Chouzenoux, J. Idier, S. Moussaoui

A Majorize-Minimize strategy for subspace optimization applied to image restoration in *IEEE Trans. Image Process.*, vol.20, no.18, pp. 1517-1528, 2011.



#### E. Chouzenoux, A. Jezierska, J.-C. Pesquet, H. Talbot

A Majorize-Minimize Subspace Approach for  $\ell_2$ - $\ell_0$  Image Regularization in SIAM J. Imag. Sci., vol.6, no.1, pp. 563-591,2013.



E. Chouzenoux, L. Lamassé, S. Anthoine, C. Chaux, A. Jaouen, I. Vanzetta, F. Debarbieux Approche variationnelle pour la déconvolution rapide de données 3D en microscopie biphotonique in *Actes du 25e colloque GRETSI*, Lyon, France, 8-11 septembre 2015.



A. Florescu, E. Chouzenoux, J.-C. Pesquet, P. Ciuciu and S. Ciochina.A Majorize-Minimize Memory Gradient Method for Complex-Valued Inverse Problems in Signal Processing, Vol. 103, pp. 285-295, 2014.