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Inverse problems and large scale optimization

Original image Degraded image

x ∈ RN y = D(Hx) ∈ RM

◮ H ∈ RM×N : matrix associated with the degradation
operator.

◮ D : RM → RM : noise degradation.

How to find a good estimate of x from the observations y and the
model H in the context of large scale processing?
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Inverse problems and large scale optimization
Variational approach:

An image estimate x̂ ∈ RN is generated by minimizing

(∀x ∈ R
N ) F (x) =

S
∑

s=1

fs(Lsx)

with fs : RPs → R, Ls ∈ RPs×N , Ps > 0.

In the context of maximum a posteriori estimation :
◮ L1: Degradation operator, i.e. H;

◮ f1: Data fidelity (e.g. least squares);

◮ (fs)26s6S : Regularization functions on some linear transforms (Ls)26s6S of
the sought solution.

→ Often no closed form expression or solution expensive to compute
(especially in large scale context).

◮ Need for an efficient iterative minimization strategy !
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Outline

∗ MAJORIZE-MINIMIZE MEMORY GRADIENT ALGORITHM
◮ Majorize-Minimize principle
◮ Subspace acceleration
◮ Convergence theorem

∗ BLOCK PARALLEL 3MG ALGORITHM
◮ Block alternating 3MG
◮ Block separable majorant
◮ Practical implementation
◮ Convergence theorem

∗ APPLICATION TO 3D DECONVOLUTION
◮ Variational approach
◮ Parallel implementation
◮ Numerical results
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Majorize-Minimize Memory
Gradient algorithm
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Majorize-Minimize principle

1. Find a tractable surrogate for F  Majorization step

F (·)Q(·,xk)

xk xk+1
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Majorize-Minimize principle

1. Find a tractable surrogate for F  Majorization step

 Quadratic tangent majorant of F at xk

(∀x ∈ R
N ) Q(x,xk) = F (xk) +∇F (xk)

⊤(x− xk)

+
1

2
(x− xk)

⊤A(xk)(x− xk)

where, for every x ∈ RN , A(x) ∈ RN×N is a symmetric definite
positive matrix such that

(∀x ∈ R
N ) Q(x,xk)>F (x).

∗ Several methods available to construct matrix A(x) in the
context of inverse problems in image processing.
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Subspace acceleration

2. Minimize in a subspace  Minimization step

(∀k ∈ N
∗) xk+1 ∈ Argmin

x∈ranDk

Q(x,xk),

with Dk ∈ RN×Mk .
◮ ranDk = RN ⇒ half-quadratic algorithm.
◮ Mk small ⇒ low-complexity per iteration.

Memory-Gradient subspace:

Dk =

{
[−∇F (xk),xk − xk−1] if k > 1

−∇F (x0) if k = 0

 3MG algorithm

(similar ideas in NLCG, L-BFGS, TWIST, FISTA, ...)
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3MG algorithm

Initialize x0 ∈ RN

For k = 0, 1, 2, . . .

Compute ∇F (xk)
If k = 0⌊
Dk = −∇F (x0)

Else⌊
Dk = [−∇F (xk),xk − xk−1]

Sk = D⊤
k A(xk)Dk

uk = S
†
kD

⊤
k ∇F (xk)

xk+1 = xk +Dkuk

 Low computational cost since Sk is of dimension Mk ×Mk, with Mk ∈ {1, 2}.

 Complexity reductions possible by taking into account the structures of F and Dk .
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Convergence theorem

Let assume that:

1. F : RN → R is a coercive, differentiable function.

2. There exists (ν, ν) ∈]0,+∞[2 such that (∀k ∈ N)
ν Id � A(xk) � ν Id,

Then, the following hold:

• ‖∇F (xk)‖ → 0 and F (xk) ց F (x̂) where x̂ is a critical
point of F .

• If F is convex, any sequential cluster point of (xk)k∈N is a
minimizer of F .

• If F is strongly convex, then (xk)k∈N converges to the
unique (global) minimizer x̂ of F

• If F satisfies the Kurdyka-Łojasiewicz inequality, then the
sequence (xk)k∈N converges to a critical point of F .
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3MG in practical situations

3MG algorithm outperforms state-of-the arts optimization
algorithms in many image processing applications.

Problem: Computational issues with very large-size problems.

Main reasons:
◮ High computational time for calculating the gradient

direction ∇F (xk) and the matrix Sk = D⊤
k A(xk)Dk;

◮ High storage cost for ∇F (xk), Dk and xk.

↓
Block parallel approach
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Block parallel 3MG algorithm
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Block parallel strategy

The vector of unknowns x is partitioned into block subsets .
At each iteration, some blocks are updated in parallel .

Advantages:
◮ Control of the memory thanks to the block alternating strategy;
◮ Reduction of the computational time thanks to the parallel procedure.

x = x(1) x(j) x(J)

x(S) = (xp)p∈S =
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Block alternating 3MG

1. Select a block subset : Choose a non empty Sk ⊂ {1, . . . , J}.
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Block alternating 3MG

1. Select a block subset : Choose a non empty Sk ⊂ {1, . . . , J}.

2. Find a tractable surrogate in this subset :
 Set A(Sk)(xk) = ([A(xk)]p,p)p∈Sk

. The restriction of F to Sk is majorized at xk by

(∀v ∈ R
|Sk|) Q(Sk)(v,xk) = F (xk) +∇F (Sk)(xk)

⊤(v − x
(Sk)
k

)

+
1

2
(v − x

(Sk)
k

)⊤A
(Sk)(xk)(v − x

(Sk)
k

).
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Block alternating 3MG

1. Select a block subset : Choose a non empty Sk ⊂ {1, . . . , J}.

2. Find a tractable surrogate in this subset :
 Set A(Sk)(xk) = ([A(xk)]p,p)p∈Sk

. The restriction of F to Sk is majorized at xk by

(∀v ∈ R
|Sk|) Q(Sk)(v,xk) = F (xk) +∇F (Sk)(xk)

⊤(v − x
(Sk)
k

)

+
1

2
(v − x

(Sk)
k

)⊤A
(Sk)(xk)(v − x

(Sk)
k

).

3. Minimize within the memory gradient subspace

x
(Sk)
k+1 = Argmin

v∈ranD
(Sk)

k

Q(Sk)(v,xk)

where

(∀j ∈ Sk) D
(j)
k

=

{

−∇F (j)(xk) if j /∈
⋃k−1

ℓ=0 Sℓ,
[

−∇F (j)(xk)
∣

∣x
(j)
k

− x
(j)
k−1] otherwise.
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Block alternating 3MG

1. Select a block subset : Choose a non empty Sk ⊂ {1, . . . , J}.

2. Find a tractable surrogate in this subset :
 Set A(Sk)(xk) = ([A(xk)]p,p)p∈Sk

. The restriction of F to Sk is majorized at xk by

(∀v ∈ R
|Sk|) Q(Sk)(v,xk) = F (xk) +∇F (Sk)(xk)

⊤(v − x
(Sk)
k

)

+
1

2
(v − x

(Sk)
k

)⊤A
(Sk)(xk)(v − x

(Sk)
k

).

3. Minimize within the memory gradient subspace

x
(Sk)
k+1 = Argmin

v∈ranD
(Sk)

k

Q(Sk)(v,xk)

where

(∀j ∈ Sk) D
(j)
k

=

{

−∇F (j)(xk) if j /∈
⋃k−1

ℓ=0 Sℓ,
[

−∇F (j)(xk)
∣

∣x
(j)
k

− x
(j)
k−1] otherwise.

Problem: Matrices A(S) do not have any block diagonal structure
=⇒ Difficult to perform Step 3 in parallel !
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Block separable majorant matrix

Let us assume that:

(∀x ∈ R
N ) A(x) =

S
∑

s=1

L
⊤
s Diag {ωs(Lsx)}Ls,

Let S ⊂ {1, . . . , J} non empty. Then,

(∀x ∈ R
N ) A

(S)(x)�B
(S)(x) = BDiag

{

(

B
(j)(x)

)

j∈S

}

,

where, for every j ∈ S, matrix B(j)(x) ∈ RNj×Nj is given by:

B
(j)(x) =

S
∑

s=1

(

(L
(j)
s )⊤Diag {bs(Lsx)}L

(j)
s

)

,

with, for every s ∈ {1, . . . , S} and p ∈ {1, . . . , Ps},

[bs(Lsx)]p = [ωs(Lsx)]p[|L
(S)
s |1|S|]p/[|L

(j)
s |1Nj

]p.

Proof: Rely on Jensen’s inequality.
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BP3MG Algorithm

Initialize x0 ∈ RN

For k = 0, 1, 2, . . .

Select Sk ⊂ {1, . . . , J} s.t. |Sk| = C

Parfor j ∈ Sk

Compute ∇F (j)(xk)

Compute B
(j)
k (xk)

Construct D
(j)
k

u
(j)
k = −

(
(D

(j)
k )⊤B

(j)
k (xk)D

(j)
k

)†
(D

(j)
k )⊤∇F (j)(xk)

x
(j)
k+1 = x

(j)
k +D

(j)
k u

(j)
k

Set , for every j ∈ {1, . . . , J} \ Sk, x
(j)
k+1 = x

(j)
k .

Share
(
x
(j)
k+1

)
j∈Sk

between all cores.
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Practical implementation

In practice, it is usually not necessary to send the full vector xk+1

to all the cores, at each iteration k.

◮ The update of the j-th block only require the knowledge of
the current iterate at indices

Nj =
S⋃

s=1

{
n ∈ {1, . . . , N}|(∃p ∈ Ps,j) [Ls]p,n 6= 0

}
,

where Ps,j = {p ∈ {1, . . . , Ps} |(∃i ∈ Jj) [Ls]p,i 6= 0}.

∗ The cardinality of Nj is usually very small with respect to N .

Example: S = 1 and L1 is a discrete gradient operator with
one pixel neighborhood ⇒ |Nj | = 3.
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Convergence theorem (ongoing work)

Let assume that:

1. F : RN → R is a coercive, differentiable function.

2. There exists a constant K > J such that, for every k ∈ N,
{1, . . . , J} ⊂

⋃k+K−1
ℓ=k Sℓ.

3. There exists (ν, ν) ∈]0,+∞[2 such that (∀k ∈ N)
ν Id � B(Sk)(xk) � ν Id,

Then, the following hold:

• ‖∇F (xk)‖ → 0 and F (xk) ց F (x̂) where x̂ is a critical
point of F .

• If F is convex, any sequential cluster point of (xk)k∈N is a
minimizer of F .

• If F is strongly convex, then (xk)k∈N converges to the
unique (global) minimizer x̂ of F
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Application to 3D image
deconvolution
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Problem statement

➜ ➜

Original 3D image Degradations Measured 3D image
x ∈ RN H ∈ RN×N , b ∈ RN y = Hx+ b

◮H : 3D convolution operator representing depth-variant 3D
Gaussian blur (kernel size 5× 5× 11). For each depth
z ∈ {1, . . . , NZ}, different variance and rotation parameters.

◮ b: additive Gaussian i.i.d. zero-mean noise.
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Variational approach

(∀x ∈ R
N ) F (x) =

1

2
‖Hx− y‖2 +R(x)

OBJECTIVE FUNCTION

 Hybrid penalization term R = R1 +R2 +R3:
◮ R1(x) = η

∑N
n=1 d

2
[xmin,xmax]

(xn)

◮ R2(x) = λ
∑N

n=1

√
([V Xx]n)

2
+ ([V Yx]n)

2
+ δ2

◮ R3(x) = κ
∑N

n=1([V
Zx])2

• (η, λ, δ, κ) ∈ (0,+∞)4: regularization parameters;
• [xmin, xmax]: range of pixel intensity values; dC : distance to set C;

• V
X,V Y,V Z

∈ R
N×N : discrete gradients along X,Y and Z.
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Parallel implementation

◮ Blocks: NZ slices of the 3D
volume.

◮ Message Passing Interface
command SPMD of MATLAB R©

◮ Master-Slave implementation:
➜ 1 master core:

Main loop of the algorithm.
➜ C slave cores:

Perform their tasks
simultaneously.
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Parallel implementation

◮ Blocks: NZ slices of the 3D
volume.

◮ Message Passing Interface
command SPMD of MATLAB R©

◮ Master-Slave implementation:
➜ 1 master core:

Main loop of the algorithm.
➜ C slave cores:

Perform their tasks
simultaneously.

Iteration k

x(1)

x(J)

Slave 1

Slave 2

Slave 3

Slave 4
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Parallel implementation

◮ Blocks: NZ slices of the 3D
volume.

◮ Message Passing Interface
command SPMD of MATLAB R©

◮ Master-Slave implementation:
➜ 1 master core:

Main loop of the algorithm.
➜ C slave cores:

Perform their tasks
simultaneously.

Iteration k + 1

x(1)

x(J)

Slave 1

Slave 2

Slave 3

Slave 4
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Restoration results: FlyBrain

(a) Original (b) Degraded (c) Restored

Images corresponding to slice z = 18 of the 3D volume FlyBrain (256× 256× 48).
Initial SNR 13.42 dB. Final SNR 16.98 dB.
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Restoration results: Tube

(a) Original (b) Degraded (c) Restored

Images corresponding to slice z = 31 of the 3D volume Tube (284× 280× 48).
Initial SNR 11.53 dB. Final SNR 14.47 dB.
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Acceleration
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(b) Tube

Ratio between the computation time for one core and the computation time
for C cores (+) with linear fitting (· · · ).
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Conclusion

The Block Parallel Majorize-Minimize Memory Gradient
(BP3MG) Algorithm handles smooth optimization problems of
very large dimension.

X Reduced complexity / memory requirement.

X High efficiency in the context of 3D image restoration.

X Great potential for parallelization.

 Future work will involve implementation in other languages.
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