Imaging Brain Activity and application to Brain-Computer Interfaces

Maureen Clerc

Inria Sophia Antipolis, France

Ínría

Paris, November 24 2016 Imaging in Paris Seminar

Maureen Clerc (Inria, France)

Imaging Brain Activity

・ロン ・四 と ・ ヨ と ・ ヨ と …

Introduction

- schematic organization
- variability of cortical foldings
- subject-dependent localization of activity

・ロト ・回ト ・ヨト ・ヨト

Brain activity can be localized:

- invasively: brain stimulation, depth electrodes
- non-invasively: neuroimaging

Introduction

Introduction

Example: neuroimaging for presurgical evaluation of epilepsy

Epileptogenic regions must be localized precisely

- intracerebral recordings
- non-invasive recordings

Functional regions also to be localized precisely for surgical planning

(日) (周) (王) (王)

Acquisition devices

Device

Microelectrode Arrays action potentials (single neurons)

Intracerebral electrodes post-synaptic + action potentials (10² neurons)

Electrocorticography post-synaptic activity (10³ neurons)

Electro (Magneto)encephalography post-synaptic activity (10^4 neurons)

functional MRI brain metabolic activity

functional Near-Infrared Spectroscopy brain metabolic activity

electric potential \rightarrow spikes

electric potential \rightarrow LFP and spikes

electric potential

electric potential / magnetic field

 O_2 consumption in 3D

 O_2 consumption of region between optodes

Maureen Clerc (Inria, France)

Non-invasive recordings: electric potential

1924: Hans Berger measures electrical potential variations on the scalp.

- birth of Electro-Encephalography (EEG)
- several types of oscillations detected (alpha 10 Hz, beta 15 Hz)
- origin of the signal unclear at the time
- scalp topographies ressemble dipolar field patterns

(日) (同) (三) (三)

Noninvasive recordings: from electric to magnetic field

A dipole generates both an **electric** and a **magnetic** field

magnetic field

イロト イポト イヨト イヨト

- 1963: Magnetocardiography,
- 1972: Magneto-Encephalography (MEG)

D. Cohen, MIT, measures alpha waves, 40 years after EEG Superconductive QUantum Interference Device Magnetic shielding

Advantage of MEG over EEG: spatially more focal

[Badier, Bartolomei et al, Brain Topography 2015]

Comparison between modalities

э

To achieve this resolution with EEG or MEG requires...

IEEE SIGNAL PROCESSING MAGAZINE

イロト イポト イヨト イヨト

[Baillet Mosher Leahy IEEE Sig Proc Mag 2001]

a.k.a

- "Source reconstruction"
- Source imaging"
- "Cortical source estimation"
- "Inverse solution"

Outline

Introduction to Neuroimaging

e Forward problem: from Sources to Sensors

- Forward problem and conductivity
- Volume conduction
- Solving the Forward problem
- Inverse Source Reconstruction
 - Regularized Source Reconstruction
 - Current Source Density Mapping
 - Surface Laplacian
- Brain Computer Interfaces
 - Neuroimaging in BCI
 - Motor Imagery
 - Error-related Potential

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Origin of brain activity measured in EEG and MEG

CNRS UPR640 - USC - LANI

Pyramidal neurons post-synaptic currents [Baillet et al., IEEE Signal Processing Mag, 2001] Current perpendicular to cortical surface macrocolumn co-activate

Neurons in a

(日) (周) (王) (王)

Conductivity σ

Relation between sources \mathbf{J}^{p} and potential V

$\nabla \cdot \boldsymbol{\sigma} \nabla V = \nabla \cdot \mathbf{J}^{\mathsf{p}}$

- Scalp, CSF, and gray matter: σ isotropic ,
- White matter: σ anisotropic, depends on direction of fibers,
- Skull: σ inhomogeneous, anisotropic, holes.

FORWARD PROBLEM OF EEG:

compute potential V on sensors supposing sources $\mathbf{J}^{\mathbf{p}}$ and conductivity σ to be known

Influence of conductivity on localization

Averaged interictal spike. Inverse reconstruction using MUSIC.

[courtesy of J-M Badier, La Timone]

Maureen Clerc (Inria, France)

Forward problem: from Sources to Sensors

Influence of orientation (spherical geometry)

[courtesy of S.Baillet]

э

・ロン ・四 と ・ ヨ と ・ ヨ と …

Forward problem: from Sources to Sensors

Influence of depth (realistic geometry)

Maureen Clerc (Inria, France)

Volume conduction produces a blurring effect

- not the same according to the modality (EEG, MEG, ECoG)
- EEG most diffuse (skull barrier)
- MEG more "transparent" to the skull
- ECoG under the skull, much less blurring.

Note: the spatial mixture is a curse, but also a blessing !

• EEG sensors sensitive to large areas of the cortex

Conversely intracerebral electrodes only sensitive to close-by regions.

A good understanding of the spatial mixture (forward problem) provides a key to unmixing the data (inverse problem):

A good understanding of the spatial mixture (forward problem) provides a key to unmixing the data (inverse problem):

Finding a spatial filter is like fitting a pair of glasses.

The spatial mixture is instantaneous

- electromagnetic waves propagate at speed of light
- no "echo effect", nor delay, at the frequencies of interest for EEG

Nevertheless the spatial mixture also leads to a temporal mixture of signals

- effect on latencies
- effect on the frequency spectrum

Volume conduction: temporal resolution

Dipole 1: under C1, amplitude peak: 100 ms Dipole 2: under C3, amplitude peak: 250 ms [Burle, Spieser et al, int J Psychophysiol. 2015]

- **A**

∃ → < ∃ →</p>

Volume conduction: temporal resolution

Volume conduction has an adverse effect on temporal resolution \rightarrow model it in order to compensate for it

Maureen Clerc (Inria, France)

Imaging Brain Activity

Solving the forward problem

• simplest model: overlapping spheres

- √ no meshing required
- \checkmark analytical methods
- $\times\,$ crude approximation of head conduction, especially for EEG

Solving the forward problem

• simplest model: overlapping spheres

- ✓ no meshing required
- ✓ analytical methods
- × crude approximation of head conduction, especially for EEG

- surface-based-model: piecewise constant conductivity
- \checkmark only surfaces need to be meshed
- ✓ Boundary Element Method (BEM)
- × only isotropic conductivities

Solving the forward problem

• simplest model: overlapping spheres

- ✓ no meshing required
- ✓ analytical methods
- × crude approximation of head conduction, especially for EEG

- surface-based-model: piecewise constant conductivity
- \checkmark only surfaces need to be meshed
- ✓ Boundary Element Method (BEM)
- × only isotropic conductivities
 - most sophisticated model: volume-based conductivity
- ✓ detailed conductivity model, (anisotropic: tensor at each voxel)
- ✓ Finite Element Method (FEM),
- × huge meshes, difficult to handle

The forward problem: better matching specificities

- User-specific:
 - cortical foldings
 - tissue conductivities
 - tissue shapes
- Session-specific:
 - sensor positions

Taking care of these specificities (*forward* problem) + reconstructing brain activity (*inverse* problem) leads to better information on brain activity (more precise in space and in time)

Outline

Introduction to Neuroimaging

Porward problem: from Sources to Sensors

- Forward problem and conductivity
- Volume conduction
- Solving the Forward problem

Inverse Source Reconstruction

- Regularized Source Reconstruction
- Current Source Density Mapping
- Surface Laplacian
- Brain Computer Interfaces
 - Neuroimaging in BCI
 - Motor Imagery
 - Error-related Potential

(日) (同) (三) (三)

Inverse Problems

Inverse problems recover hidden information, using measurements and priors:

Forward vs. Inverse Problems

Forward problems are generally well-posed

- existence
- uniqueness
- continuity.

Conversely, inverse problems are generally ill-posed: either

- non-unique
- non-stable (non-continuous)

In ideal cases, inverse source reconstruction is unique. It needs regularization to be stable.

< ロ > < 同 > < 回 > < 回 > < 回 > <

From forward to inverse problem: the gain matrix

Measurements **M** resulting from two sources:

- source $s_1(t)$ at position \mathbf{x}_1 , orientation \vec{q}_1
- source $s_2(t)$ at position \mathbf{x}_2 , orientation \vec{q}_2

$$oldsymbol{\mathsf{M}}(t) = egin{bmatrix} G_1(x_1, ec{q}_1) \ dots \ G_m(x_1, ec{q}_1) \end{bmatrix} imes oldsymbol{s}_1(t) + egin{bmatrix} G_1(x_2, ec{q}_2) \ dots \ G_m(x_2, ec{q}_2) \end{bmatrix} imes oldsymbol{s}_2(t)$$

source: S. Baillet, Master MVA

(日) (同) (三) (三)

From forward to inverse problem: the gain matrix

For *n* time samples $t_1 \ldots t_n$,

$$M = GS$$

where $\boldsymbol{\mathsf{S}}$ contains the source amplitudes

$$\mathbf{S} = egin{bmatrix} s_1(t_1) & \ldots & s_1(t_n) \ dots & \ddots & dots \ s_N(t_1) & \ldots & s_N(t_n) \end{bmatrix}$$

GAIN MATRIX

Gain matrix **G** computed via the Forward Problem,

provides a linear relationship between source amplitudes and sensor data.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Source reconstruction: estimate S from M

Measurements on m EEG and/or MEG sensors. The forward problem of volume conduction provides **G**: a linear relationship between sources and sensor data:

 $\begin{bmatrix} M_1(t) \\ \vdots \\ M_m(t) \end{bmatrix} = \begin{bmatrix} G_1(x_1, \vec{q}_1) & \dots & G_1(x_p, \vec{q}_p) \\ \vdots & \ddots & \vdots \\ G_m(x_1, \vec{q}_1) & \dots & G_m(x_p, \vec{q}_p) \end{bmatrix} \begin{bmatrix} s_1(t) \\ \vdots \\ s_p(t) \end{bmatrix} + \mathbf{N}$ $\begin{bmatrix} \mathbf{M}_1(t) \\ \vdots \\ \mathbf{M}_n(t) \end{bmatrix} = \begin{bmatrix} G_1(x_1, \vec{q}_1) & \dots & G_n(x_p, \vec{q}_p) \\ \mathbf{M} & \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{G} \text{ gain matrix} \\ \mathbf{M} \end{bmatrix}$

$$M = GS + N$$

p sources $\gg m$ sensors

Regularized source reconstruction

Find sources **S** minimizing $\|\mathbf{M} - \mathbf{GS}\|^2 + \lambda R(\mathbf{S})$

 $\|\mathbf{M} - \mathbf{G}\mathbf{S}\|^2 + \lambda R(\mathbf{S})$ with $R(\mathbf{S})$: regularization.

<ロ> (日) (日) (日) (日) (日)

Regularized Source Reconstruction

Finding **S** that minimizes

$$C(\mathbf{S}) = \|\mathbf{M} - \mathbf{G}\mathbf{S}\|^2 + \lambda R(\mathbf{S})$$

Many options for regularization $R(\mathbf{S})$.

 L^2 regularization:

$$R(\mathbf{S}) = Tr(\mathbf{S}^T\mathbf{S})$$

Minimum Norm solution ${\bf S}$

$$\mathbf{S} = \mathbf{G}^{\mathsf{T}} (\mathbf{G} \mathbf{G}^{\mathsf{T}} + \lambda \mathbf{I})^{-1} \mathbf{M}$$

Can be seen as a spatial filter applied to the measurements.

[Adde Clerc Keriven 2005]

Current Source Density mapping

Cortical Source reconstruction : sometimes cumbersome

- cortical surface highly convoluted, difficult to segment
- high number of vertices

Alternative approach: mapping current sources on a simpler surface Recall that electric potential satisfies

$$\nabla \cdot \sigma \nabla V = \nabla \cdot \mathbf{J}^{\mathsf{p}}$$

so outside the brain $\nabla \cdot \sigma \nabla V = 0$.

Cortical Mapping principle

Reconstruct the normal current on the pial surface, given that

- $V = \mathbf{M}$ on sensors,
- $\nabla \cdot \sigma \nabla V = 0$ outside the brain .

Cortical Mapping

Cortical Mapping

Surface Laplacian

Even more simple: only requiring scalp surface On a given surface, one can define: Tangential directions: x and y Radial direction: z. Surface Laplacian:

$$\Delta_{\mathbf{S}} V = \frac{\partial^2 V}{\partial \mathbf{x}^2} + \frac{\partial^2 V}{\partial \mathbf{y}^2}$$

related to volume Laplacian:

$$\begin{aligned} \Delta V &= \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} \\ &= \Delta_{\mathsf{S}} V + \frac{\partial^2 V}{\partial z^2} \end{aligned}$$

In regions with no sources, $\Delta V = 0$ so on the scalp

$$\Delta_{\mathbf{S}} V = -\frac{\partial^2 V}{\partial z^2}$$

Maureen Clerc (Inria, France)

Surface Laplacian: measures skull current

Surface Laplacian: spatial and temporal resolution

[Burle, Spieser et al, int J Psychophysiol. 2015]

Maureen Clerc (Inria, France)

4 A >

Surface Laplacian: spatial and temporal resolution

[Burle, Spieser et al, int J Psychophysiol. 2015]

Outline

Introduction to Neuroimaging

Porward problem: from Sources to Sensors

- Forward problem and conductivity
- Volume conduction
- Solving the Forward problem

Inverse Source Reconstruction

- Regularized Source Reconstruction
- Current Source Density Mapping
- Surface Laplacian

Brain Computer Interfaces

- Neuroimaging in BCI
- Motor Imagery
- Error-related Potential

(日) (同) (三) (三)

Brain Computer Interfaces

Maureen Clerc (Inria, France)

Imaging Brain Activity

Applications

Fauteuil roulant

Prothèse

・ロン ・四 と ・ ヨ と ・ ヨ と

э

Neuroimaging in BCI

Current BCI practice analyses signals at sensor level, with signal processing / Machine Learning techniques

Advantages of features in source space rather than sensor space:

- features closer to actual brain activity
- neuroscientifical interpretation
- better alignment of features (across reference, montages, sessions, subjects...)

Note:

Other fields (e.g. psychology) are realizing the benefits of analyzing sources rather than scalp potentials.

[Kayser Tenke, Editorial Int J Psychophysiology 97 (2015)]

イロト 不得 トイヨト イヨト

Motor imagery classification

32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina, August 31 - September 4, 2010

Reconstruction of cortical sources activities for online classification of electroencephalographic signals.

Joan Fruitet and Maureen Clerc

Maureen Clerc (Inria, France)

Imaging Brain Activity

ERD

36 / 43

2010

Online classification in Source/Signal space

Goal:

- Comparison of a classification task in Source/Signal space
- Various preprocessings:
 - Sensor measurements
 - Spatial Laplacian
 - (Weighted) Minimum norm
 - Beamformed

Minimum Norm Be discrimininative features

[Fruitet Clerc EMBC 2007] Maureen Clerc (Inria, France)

Imaging Brain Activity

Beamforming

・ロト ・個ト ・ヨト ・ヨト

Binary Classification of Imagined Movements

Method	right/left	right/feet	left/feet	average
No reconstruction	68%	75%	71%	70,9%
Spatial Laplacian	69%	81%	75%	75,1%
Minimum-Norm	76%	82%	72%	76,6%
Weighted MN	77%	81%	74%	77,2%
Beamformer	75%	75%	74%	74,7%

Cortical Source Reconstruction, a form of spatial filtering, **improves feature discrimination**.

A E > A E >

Error-related Potential

Online extraction and single trial analysis of regions contributing to erroneous feedback detection

```
Matthew Dyson<sup>a</sup>, <sup>A</sup>, <sup>M</sup>, Eoin Thomas<sup>b</sup>, Laurence Casini<sup>a</sup>, Boris Burle<sup>a</sup>, <sup>A</sup>, <sup>M</sup>
http://dx.doi.org/10.1016/j.neuroimage.2015.06.041
```

Highlights

- We extract discriminatory error-related activity in the source space from BCI EEG.
- Source features allow single trial classification of error feedback in noisy EEG.
- We assess whether automatically extracted EEG activity is functionally interpretable.

cf Transfer Learning challenge on Kaggle

201

Error-related Potential

Goal:

Detecting the Error Potentials in individual signals Needs supervised classification

Training data = labeled signals (error / no-error) Challenge:

イロト イポト イヨト イヨト

Detection with little or no training data

Potentials averaged over many repetitions

Error-related Potential

Using prior information on

- Error Potential source location (Anterior Cingulate Area)
- Error Potential source orientation (vertical, upward)

FuRIA algorithm Lotte et al IEEE T Sig Proc 2009

Conclusion

Imaging Brain Activity:

- brings out relevant activities
- allows to interpret results
- allows to understand mechanisms

But to be ued in practise important to find a compromise between

- complexity of models
 - subject-specific geometries ?
 - number of structures, of tissue boundaries ?
 - type of inverse problem ?
- usability of methods
 - imaging as investigation / interpretation
 - imaging for limiting calibration data
 - features must be extracted in real-time (j.100 ms)

Conclusion

Contributors to this presentation

Inria Sophia Antipolis

Maureen Clerc Théodore Papadopoulo Joan Fruitet Eoin Thomas

Marseille LNC Boris Burle

Matthew Dyson

Laurence Casini

Franck Vidal

INSERM Lyon

Jérémie Mattout Manu Maby Margaux Perrin

イロト イポト イヨト イヨト

Support from:

Agence Nationale de la Recherche (projet CoAdapt) Inria project-lab BCI-LIFT Conclusion

Contributors to this presentation

Inria Sophia Antipolis

Maureen Clerc Théodore Papadopoulo Joan Fruitet Eoin Thomas

Marseille LNC Boris Burle

Matthew Dyson

Laurence Casini

Franck Vidal

INSERM Lyon

Jérémie Mattout Manu Maby Margaux Perrin

(日) (同) (三) (三)

Support from:

Agence Nationale de la Recherche (projet CoAdapt) Inria project-lab BCI-LIFT

Hot from the press ! Coedited with Laurent Bougrain and Fabien Lotte:

