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Introduction

Introduction

schematic organization

variability of cortical foldings

subject-dependent localization of
activity

Brain activity can be localized:

invasively: brain stimulation, depth electrodes

non-invasively: neuroimaging
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Introduction

Introduction

Example: neuroimaging for presurgical evaluation of epilepsy

Epileptogenic regions must be localized
precisely

intracerebral recordings

non-invasive recordings

Functional regions also to be localized
precisely for surgical planning
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Introduction

Acquisition devices

Device Neurophysiological measure

Microelectrode Arrays
action potentials (single neurons) electric potential → spikes

Intracerebral electrodes
post-synaptic + action potentials (102 neurons) electric potential→ LFP and spikes

Electrocorticography
post-synaptic activity (103 neurons) electric potential

Electro (Magneto)encephalography
post-synaptic activity (104 neurons) electric potential / magnetic field

functional MRI
brain metabolic activity O2 consumption in 3D

functional Near-Infrared Spectroscopy
brain metabolic activity O2 consumption of region between optodes
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Introduction

Non-invasive recordings: electric potential

1924: Hans Berger measures electrical potential variations on the scalp.

birth of Electro-Encephalography (EEG)

several types of oscillations detected
(alpha 10 Hz, beta 15 Hz)

origin of the signal unclear at the time

scalp topographies ressemble dipolar field patterns
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Introduction

Noninvasive recordings: from electric to magnetic field

A dipole generates both
an electric and a magnetic field

electric field magnetic field

1963: Magnetocardiography,

1972: Magneto-Encephalography (MEG)
D. Cohen, MIT, measures alpha waves, 40 years after EEG
Superconductive QUantum Interference Device
Magnetic shielding

Advantage of MEG over EEG: spatially more focal

[Badier, Bartolomei et al, Brain Topography 2015]
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Introduction

Comparison between modalities
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Introduction

To achieve this resolution with EEG or MEG requires...

[Baillet Mosher Leahy IEEE Sig Proc Mag 2001]

a.k.a

“Source reconstruction”

“Source imaging”

“Cortical source estimation”

“Inverse solution”
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Forward problem: from Sources to Sensors

Outline

1 Introduction to Neuroimaging
2 Forward problem: from Sources to Sensors

Forward problem and conductivity
Volume conduction
Solving the Forward problem

3 Inverse Source Reconstruction

Regularized Source Reconstruction
Current Source Density Mapping
Surface Laplacian

4 Brain Computer Interfaces

Neuroimaging in BCI
Motor Imagery
Error-related Potential
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Forward problem: from Sources to Sensors

Origin of brain activity measured in EEG and MEG

[Baillet et al., IEEE Signal Processing Mag, 2001]

Pyramidal neurons Current perpendicular Neurons in a
post-synaptic currents to cortical surface macrocolumn co-activate
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Forward problem: from Sources to Sensors

Conductivity σ

Relation between sources Jp and potential V

∇ · σ∇V = ∇ · Jp

Scalp, CSF, and gray matter: σ isotropic ,
White matter: σ anisotropic, depends on direction of fibers,
Skull: σ inhomogeneous, anisotropic, holes.

Forward Problem of EEG:

compute potential V on sensors
supposing sources Jp and conductivity σ to be known

EEG sensitive to ratio σscalp/σskull [Vallaghé, Clerc IEEE TBME 2009]

σscalp/σskull

Rush & Driscoll [1968] 80
Cohen & Cuffin [1983] 80
Oostendorp & al. [2000] 15
Gonçalves, de Munck etal. [2003] 20− 50

Challenge: calibrating σ, non-invasively, in vivo:
injecting known current on the scalp;
multimodal measurements (MEG,EEG).
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Forward problem: from Sources to Sensors

Influence of conductivity on localization

σscalp/σskull = 80 σscalp/σskull = 40 σscalp/σskull = 20

Averaged interictal spike.
Inverse reconstruction using MUSIC.
[courtesy of J-M Badier, La Timone]
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Forward problem: from Sources to Sensors

Influence of orientation (spherical geometry)

[courtesy of S.Baillet]
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Forward problem: from Sources to Sensors

Influence of depth (realistic geometry)

[courtesy of S.Baillet]
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Forward problem: from Sources to Sensors

Consequences of volume conduction

Volume conduction produces a blurring effect

not the same according to the modality (EEG, MEG, ECoG)

EEG most diffuse (skull barrier)

MEG more “transparent” to the skull

ECoG under the skull, much less blurring.

Note: the spatial mixture is a curse, but also a blessing !

EEG sensors sensitive to large areas of the cortex

Conversely intracerebral electrodes only sensitive to close-by regions.
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Forward problem: from Sources to Sensors

Consequences of volume conduction

A good understanding of the spatial mixture (forward problem) provides a key to
unmixing the data (inverse problem):

Finding a spatial filter is like fitting a pair of glasses.
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Forward problem: from Sources to Sensors

Consequences of volume conduction

The spatial mixture is instantaneous

electromagnetic waves propagate at speed of light

no “echo effect”, nor delay, at the frequencies of interest for EEG

Nevertheless the spatial mixture also leads to a
temporal mixture of signals

effect on latencies

effect on the frequency spectrum
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Forward problem: from Sources to Sensors

Volume conduction: temporal resolution

Dipole 1: under C1, amplitude peak: 100 ms
Dipole 2: under C3, amplitude peak: 250 ms
[Burle, Spieser et al, int J Psychophysiol. 2015]
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Forward problem: from Sources to Sensors

Volume conduction: temporal resolution

Volume conduction has an adverse effect on temporal resolution
→ model it in order to compensate for it
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Forward problem: from Sources to Sensors

Solving the forward problem

simplest model: overlapping spheres

X no meshing required

X analytical methods

× crude approximation of head conduction, especially for
EEG

surface-based-model: piecewise constant conductivity

X only surfaces need to be meshed

X Boundary Element Method (BEM)

× only isotropic conductivities

most sophisticated model: volume-based conductivity

X detailed conductivity model,
(anisotropic: tensor at each voxel)

X Finite Element Method (FEM),

× huge meshes, difficult to handle
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Forward problem: from Sources to Sensors

The forward problem: better matching specificities

User-specific:

cortical foldings
tissue
conductivities
tissue shapes

Session-specific:

sensor positions

Taking care of these specificities (forward problem)
+ reconstructing brain activity (inverse problem)
leads to better information on brain activity
(more precise in space and in time)
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Inverse source reconstruction

Outline

1 Introduction to Neuroimaging
2 Forward problem: from Sources to Sensors

Forward problem and conductivity
Volume conduction
Solving the Forward problem

3 Inverse Source Reconstruction

Regularized Source Reconstruction
Current Source Density Mapping
Surface Laplacian

4 Brain Computer Interfaces

Neuroimaging in BCI
Motor Imagery
Error-related Potential
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Inverse source reconstruction

Inverse Problems

Inverse problems recover hidden information, using measurements and priors:

Source Reconstruction

Current Source Density Mapping
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Inverse source reconstruction

Forward vs. Inverse Problems

Forward problems are generally well-posed

existence

uniqueness

continuity.

Conversely, inverse problems are generally ill-posed: either

non-unique

non-stable (non-continuous)

In ideal cases, inverse source reconstruction is unique.
It needs regularization to be stable.
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Inverse source reconstruction

From forward to inverse problem: the gain matrix

Measurements M resulting from two sources:

source s1(t) at position x1, orientation ~q1

source s2(t) at position x2, orientation ~q2

M(t) =

G1(x1, ~q1)
...

Gm(x1, ~q1)

× s1(t) +

G1(x2, ~q2)
...

Gm(x2, ~q2)

× s2(t)

source: S. Baillet, Master MVA
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Inverse source reconstruction

From forward to inverse problem: the gain matrix

For n time samples t1 . . . tn,
M = GS

where S contains the source amplitudes

S =

s1(t1) . . . s1(tn)
...

. . .
...

sN(t1) . . . sN(tn)



Gain matrix

Gain matrix G computed via the Forward Problem,
provides a linear relationship between source amplitudes and sensor data.
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Inverse source reconstruction

Source reconstruction: estimate S from M

Measurements on m EEG and/or MEG sensors.
The forward problem of volume conduction provides G:
a linear relationship between sources and sensor data:M1(t)

...
Mm(t)

 =

G1(x1, ~q1) . . . G1(xp, ~qp)
...

. . .
...

Gm(x1, ~q1) . . . Gm(xp, ~qp)


s1(t)

...
sp(t)

 + N

m × n m × p p × n
M G gain matrix S

M = GS + N

p sources � m sensors

Regularized source reconstruction

Find sources S minimizing ‖M− GS‖2 + λR(S)
with R(S): regularization.
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Inverse source reconstruction

Regularized Source Reconstruction

Finding S that minimizes

C (S) = ‖M− GS‖2 + λR(S)

Many options for regularization R(S).

L2 regularization:
R(S) = Tr(STS)

Minimum Norm solution S

S = GT (GGT + λI)−1M

Can be seen as a spatial filter applied to the measurements.

[Adde Clerc Keriven 2005]
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Inverse source reconstruction

Current Source Density mapping

Cortical Source reconstruction : sometimes cumbersome

cortical surface highly convoluted, difficult to segment

high number of vertices

Alternative approach: mapping current sources on a simpler surface
Recall that electric potential satisfies

∇ · σ∇V = ∇ · Jp

so outside the brain ∇ · σ∇V = 0.

Cortical Mapping principle

Reconstruct the normal current on the pial surface, given that

V = M on sensors,

∇ · σ∇V = 0 outside the brain .

Maureen Clerc (Inria, France) Imaging Brain Activity 27 / 43



Inverse source reconstruction

Cortical Mapping

true (simulated) reconstructed reconstructed (with noise)

[Clerc Kybic Physics Med Biol 2007]
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Inverse source reconstruction

Cortical Mapping

[He Neuroimage 2002]
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Inverse source reconstruction

Surface Laplacian

Even more simple: only requiring scalp surface
On a given surface, one can define:
Tangential directions: x and y
Radial direction: z .
Surface Laplacian:

∆SV =
∂2V

∂x2
+
∂2V

∂y2

related to volume Laplacian:

∆V = ∂2V
∂x2 + ∂2V

∂y2 + ∂2V
∂z2

= ∆SV + ∂2V
∂z2

In regions with no sources, ∆V = 0 so on the scalp

∆SV = −∂
2V

∂z2
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Inverse source reconstruction

Surface Laplacian: measures skull current

∆SV = −∂
2V

∂z2

and −∂2V
∂z2 ' 1

zscalp−zskull

(
∂V
∂z (zskull)− ∂V

∂z (zscalp)
)

∂V
∂z = 0 on the scalp surface, because σ = 0 outside (air).
Therefore

−∂2V
∂z2 proportional to ∂V

∂z on outer skull.

The Surface Laplacian ∆SV is a spatial filter
which approximates the normal skull current.

Maureen Clerc (Inria, France) Imaging Brain Activity 31 / 43



Inverse source reconstruction

Surface Laplacian: spatial and temporal resolution

[Burle, Spieser et al, int J Psychophysiol. 2015]
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Inverse source reconstruction

Surface Laplacian: spatial and temporal resolution

[Burle, Spieser et al, int J Psychophysiol. 2015]
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Brain Computer Interfaces

Outline
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Brain Computer Interfaces

Brain Computer Interfaces
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Brain Computer Interfaces

Neuroimaging in BCI

Current BCI practice analyses signals at sensor level,
with signal processing / Machine Learning techniques

Advantages of features in source space rather than sensor space:

features closer to actual brain activity

neuroscientifical interpretation

better alignment of features (across reference, montages, sessions, subjects...)

Note:
Other fields (e.g. psychology) are realizing the benefits of analyzing sources
rather than scalp potentials.
[Kayser Tenke, Editorial Int J Psychophysiology 97 (2015)]
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Brain Computer Interfaces

Motor imagery classification

2010

Pfurtscheller 1999

CEA LETI

Université de  Lódź
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Brain Computer Interfaces

Online classification in Source/Signal space

Goal:

Comparison of a classification task in Source/Signal space
Various preprocessings:

Sensor measurements
Spatial Laplacian
(Weighted) Minimum norm
Beamformed

Minimum Norm Beamforming
discrimininative features

[Fruitet Clerc EMBC 2007]
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Brain Computer Interfaces

Binary Classification of Imagined Movements

Cortical Source Reconstruction, a form of spatial filtering, improves feature
discrimination.
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Brain Computer Interfaces

Error-related Potential

2015

cf Transfer Learning challenge on Kaggle
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Brain Computer Interfaces

Error-related Potential

Potentials averaged over
many repetitions

Goal:
Detecting the Error Potentials in individual signals
Needs supervised classification
Training data = labeled signals (error / no-error)
Challenge:
Detection with little or no training data
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Brain Computer Interfaces

Error-related Potential

Using prior information on
Error Potential source location (Anterior Cingulate Area)
Error Potential source orientation (vertical, upward)

FuRIA algorithm Lotte et al IEEE T Sig Proc 2009
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Conclusion

Conclusion

Imaging Brain Activity:

brings out relevant activities

allows to interpret results

allows to understand mechanisms

But to be ued in practise important to find a compromise between

complexity of models

subject-specific geometries ?
number of structures, of tissue boundaries ?
type of inverse problem ?

usability of methods

imaging as investigation / interpretation
imaging for limiting calibration data
features must be extracted in real-time (¡.100 ms)
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Conclusion
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