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Two main issues when using OT in practice :
e Poor sample complexity : need a lot of samples from u and
v to get a good approximation of W(u,v)
e Heavy computational cost : solving discrete OT requires
solving an LP — network simplex solver O(n3log(n)) [Pele
and Werman '09]
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Entropy!

Basically : Adding an entropic regularization smoothes the
constraint
Makes the problem easier :

e yields an unconstrained dual problem

e discrete case can be solved efficiently with iterative

algorithm (more on that later)

For ML applications, regularized Wasserstein is better than
standard one

In high dimension, helps avoiding overfitting
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Entropic Relaxation of OT [Cuturi
'13]

Add entropic penalty to Kantorovitch formulation of OT

min / c(x,y ) (xy) + e KL(v | @ v)
yeEN(pv) Jxxy

where

KL(y|p® v) = /Xxy(l g(djd (x,¥)) = 1)dv(x,y)
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Dual Formulation

ueC(?)?/)éc(y) /XU(X)dH(X)‘i‘/yV(}/)dV(y)

u(x)+v(y)—c(x.y)
‘6/ e du(x)duy)
XxYy

Constraint in standard OT u(x) + v(y) < c(x,y) replaced by a
smooth penalty term.
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Dual problem concave in u and v, first order condition for each
variable yield :

v(y)=clx,y)

Vu:O(:)u(x):—slog(/ye = dv(y))

Vy =0« v(y) = —¢log( / ™ du(x))
X
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The Discrete Case

Dual problem :

uj +v —c( I,yj)

n m

uipi + ViV — € e € WiV

ueRmMyveRn J J
i=1 j=1

ij=1

First order conditions for each variable:

(xi>¥7)
Viu=0% u; = —¢log( Ze — vj)

uj—c(x;,y;)

VV:O@Vj:—slog(Ze — 1)

= Do alternate maximizations!
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Sinkhorn’s Algorithm

o Iterates (a, b) := (e<,ec)

Sinkhorn algorithm [Cuturi '13]

initialize b+« 1, K« (e %/ my);
repeat
a<— Kb
b+—voKTa
return v = diag(a)Kdiag(b)

e each iteration O(nm) complexity (matrix vector
multiplication)

e can be improved to O(nlogn) on gridded space with
convolutions [Solomon et al. '15]
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=1 =4 £=10 £=40 £ =100 £=1000

e=3/N e=6/N e=10/N e=20/N e=40/N e=60/N
top : evolution of vy with number of iterations /
bottom : evolution of + with regularization parameter ¢
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Sinkhorn - Convergence

Definition (Hilbert metric)
Projective metric defined for x, y € RiJr by

max;(x;/yi)

du(x,y) := log mini(xi /i)

Theorem

The iterates (al'), b)) converge linearly for the Hilbert metric.

Remark : the contraction coefficient deteriorates quickly when
e — 0 (exponentially in worst-case)
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Sinkhorn - Convergence

Constraint violation
We have the following bound on the iterates:

dy(a), a*) < kdp (YL m, 1)

So monitoring the violation of the marginal constraints is a good
way to monitor convergence of Sinkhorn's algorithm

4

1000 2000 3000 4000 5000

e=10 e=01 e=10"°

V1L, — p|| for various regularizations
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Image courtesy of G. Peyré
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Regularized Wasserstein Barycenters [Nenna et al. '15]
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oT i = arg min W (puk, 1)
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Image from [Solomon et al. '15]
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Sinkhorn loss

Consider entropy-regularized OT

min / c(x,y)dm(x,y) + e KL(m|p ® v)
meM(pr) Jxxy

Regularized loss :

We (1, ) % / c(x,y)dm=(x. )
Xy

where 7. solution of (15)
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Sinkhorn Divergences :

interpolation between OT and
MMD

Theorem
The Sinkhorn loss between two measures ji, v is defined as:

We (s v) = 2We e(p1,v) — Wee(p, p) — Wee(v,v)

with the following limiting behavior in e:

@®asc— 0, Wc(p,v)—=2W(u,v)

@ asc — +oo, Wee(u,v)—|lu—v|_,
where ||-||_. is the MMD distance whose kernel is minus the cost
from OT.

Remark : Some conditions are required on ¢ to get MMD
distance when ¢ — oco. In particular, ¢ = |||}, 0 < p < 2is
valid.
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Sample Complexity of OT and MMD

Let 1 a probability distribution on R, and /i, an empirical
measure from g

W(p, fin) = O(n "9
MMD(p ) = O(n~1/2)
= the number n of samples you need to get a precision 7 on the

Wassertein distance grows exponentially with the dimension d of
the space!
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Sample Complexity of Sinkhorn loss seems to improve as & grows.

Plots courtesy of G. Peyré and M. Cuturi
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Generative Models

(Pushforward
Function) 99
'y (Model
/ Measure)
‘ A
IJ'G [’(“st)

C (Reference
Measure) o > " . 5
> 0 04 (Empirical
Z (Latent Space) (Data) @ @ @  Measure)

Figure: lllustration of Density Fitting on a Generative Model
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Density Fitting with Sinkhorn loss
"Formally"

Solve ming E(6)

where E(0) < We (g, )

= Issue : untractable gradient
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e Rather than approximating the gradient approximate the
loss itself
e Minibatches : E(0)
e sample xq, ..., Xy from py
o i o use enlpiricfl Wasserstein distance W, .(fig, 7) where
Models Mo = N ZIZI 6X(

e Use L iterations of Sinkhorn's algorithm : E(1)(f)

e compute L steps of the algorithm
e use this as a proxy for W(jig, v)
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Figure: Scheme of the loss approximation

o Compute exact gradient of £(1)(6) with autodiff
e Backpropagation through above graph

e Same computational cost as evaluation of £(1)(9)
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Figure: Samples from MNIST dataset
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Numerical Results on MNIST (L2
cost)

1st hidden layer 2nd hidden layer

output layer

input layer

Figure: Fully connected NN with 2 hidden layers
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Figure: Manifolds in the latent space for various parameters
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Genevay Bellemare et al. '17]
e On complex data sets, choice of a good ground metric c is
not trivial
o Use parametric cost function c,(x,y) = ||f5(x) — f3(¥)|I3
Application (Where fd) : X — Rd )
o Generative
Models e Optimization problem becomes minmax (like GANs)

mingmaxgWe, (1o, v)

Same approximations but alternate between updating the
cost parameters ¢ and the measure parameters 6
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Numerical Results on CIFAR
(learning the cost)

» 2N S

0 - airplane 1 - automobile 2 - bird 3-cat 4 - deer

5 - dog 6 - frog 7 - horse 8 - ship 9 - truck

Figure: Samples from CIFAR dataset
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Numerical Results on CIFAR
(learning the cost)

Deep convolutional GANs (DCGAN) [1511.06434]

Figure: Fully connected NN with 2 hidden layers
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Numerical Results on CIFAR
(learning the cost)

(a) MMD (b) & = 1000

Figure: Samples from the generator trained on CIFAR 10 for MMD
and Sinkhorn loss (coming from the same samples in the latent space)

Which is better? Not just about generating nice images, but
more about capturing a high dimensional distribution... Hard to
evaluate.
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Shape Registration [Feydy et al.
'17]

Registrate a shape A to a shape B
through a (rigid, diffeomorphic, etc.)
transformation ¢:

A — o(A) ~ B.

Variational setting : minimize

E(w) = Reg(yp) + d(p(A)—B)

Regularization fidelity term



	Entropy Regularized OT
	Applications in Imaging
	Large Scale "OT" for Machine Learning
	Application to Generative Models

