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Shortcomings of OT

Two main issues when using OT in practice :
• Poor sample complexity : need a lot of samples from µ and
ν to get a good approximation of W (µ, ν)

• Heavy computational cost : solving discrete OT requires
solving an LP → network simplex solver O(n3log(n)) [Pele
and Werman ’09]
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Entropy!

• Basically : Adding an entropic regularization smoothes the
constraint

• Makes the problem easier :
• yields an unconstrained dual problem
• discrete case can be solved efficiently with iterative

algorithm (more on that later)

• For ML applications, regularized Wasserstein is better than
standard one

• In high dimension, helps avoiding overfitting
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Entropic Relaxation of OT [Cuturi
’13]

Add entropic penalty to Kantorovitch formulation of OT

min
γ∈Π(µ,ν)

∫
X×Y

c(x , y)dγ(x , y) + εKL(γ|µ⊗ ν)

where

KL(γ|µ⊗ ν)
def.
=

∫
X×Y

(
log
( dγ
dµdν

(x , y)
)
− 1
)
dγ(x , y)
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Dual Formulation

max
u∈C(X )v∈C(Y)

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)

−ε
∫
X×Y

e
u(x)+v(y)−c(x,y)

ε dµ(x)dν(y)

Constraint in standard OT u(x) + v(y) < c(x , y) replaced by a
smooth penalty term.
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Dual Formulation

Dual problem concave in u and v , first order condition for each
variable yield :

∇u = 0⇔ u(x) = −ε log(

∫
Y
e

v(y)−c(x,y)
ε dν(y))

∇v = 0⇔ v(y) = −ε log(

∫
X
e

u(x)−c(x,y)
ε dµ(x))
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The Discrete Case

Dual problem :

max
u∈Rmv∈Rn

n∑
i=1

uiµi +
m∑
j=1

v jν j − ε
n,m∑
i ,j=1

e
ui+vj−c(xi ,yj )

ε µiν j

First order conditions for each variable:

∇u = 0⇔ ui = −ε log(
m∑
j=1

e
vj−c(xi ,yj )

ε ν j)

∇v = 0⇔ v j = −ε log(
n∑

i=1

e
ui−c(xi ,yj )

ε µi )

⇒ Do alternate maximizations!
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Sinkhorn’s Algorithm

• Iterates (a, b) := (e
u
ε , e

v
ε )

Sinkhorn algorithm [Cuturi ’13]

initialize b ← 1m K ← (e−cij/εmij)ij

repeat
a← µ� Kb

b ← ν � KTa

return γ = diag(a)Kdiag(b)

• each iteration O(nm) complexity (matrix vector
multiplication)

• can be improved to O(n log n) on gridded space with
convolutions [Solomon et al. ’15]
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Sinkhorn - Toy Example

Marginals µ and ν

top : evolution of γ with number of iterations l
bottom : evolution of γ with regularization parameter ε
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Sinkhorn - Convergence

Definition (Hilbert metric)

Projective metric defined for x , y ∈ Rd
++ by

dH(x , y) := log
maxi (xi/yi )
mini (xi/yi )

Theorem
The iterates (a(l), b(l)) converge linearly for the Hilbert metric.

Remark : the contraction coefficient deteriorates quickly when
ε→ 0 (exponentially in worst-case)
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Sinkhorn - Convergence

Constraint violation
We have the following bound on the iterates:

dH(a(l), a?) ≤ κdH(γ1m, µ)

So monitoring the violation of the marginal constraints is a good
way to monitor convergence of Sinkhorn’s algorithm

‖γ1m − µ‖ for various regularizations
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Color Transfer

Image courtesy of G. Peyré
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Shape / Image Barycenters
Regularized Wasserstein Barycenters [Nenna et al. ’15]

µ̄ = argmin
µ∈Σn

Wε(µk , µ)

Image from [Solomon et al. ’15]
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Sinkhorn loss

Consider entropy-regularized OT

min
π∈Π(µ,ν)

∫
X×Y

c(x , y)dπ(x , y) + εKL(π|µ⊗ ν)

Regularized loss :

Wc,ε(µ, ν)
def.
=

∫
XY

c(x , y)dπε(x , y)

where πε solution of (15)
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Sinkhorn Divergences :
interpolation between OT and

MMD

Theorem
The Sinkhorn loss between two measures µ, ν is defined as:

W̄c,ε(µ, ν) = 2Wc,ε(µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν)

with the following limiting behavior in ε:
1 as ε→ 0, W̄c,ε(µ, ν)→ 2Wc(µ, ν)

2 as ε→ +∞, W̄c,ε(µ, ν)→ ‖µ− ν‖−c
where ‖·‖−c is the MMD distance whose kernel is minus the cost
from OT.

Remark : Some conditions are required on c to get MMD
distance when ε→∞. In particular, c = ‖·‖pp , 0 < p < 2 is
valid.
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Sample Complexity

Sample Complexity of OT and MMD

Let µ a probability distribution on Rd , and µ̂n an empirical
measure from µ

W (µ, µ̂n) = O(n−1/d)

MMD(µ, µ̂n) = O(n−1/2)

⇒ the number n of samples you need to get a precision η on the
Wassertein distance grows exponentially with the dimension d of
the space!
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Sample Complexity - Sinkhorn loss

Sample Complexity of Sinkhorn loss seems to improve as ε grows.

Plots courtesy of G. Peyré and M. Cuturi
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Generative Models

Figure: Illustration of Density Fitting on a Generative Model
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Density Fitting with Sinkhorn loss
"Formally"

Solve minθ E (θ)

where E (θ)
def.
= W̄c,ε(µθ, ν)

⇒ Issue : untractable gradient



Optimal
transport

Aude
Genevay

Entropy
Regularized
OT

Applications
in Imaging

Large Scale
"OT" for
Machine
Learning

Application
to Generative
Models

Approximating Sinkhorn loss

• Rather than approximating the gradient approximate the
loss itself

• Minibatches : Ê (θ)
• sample x1, . . . , xm from µθ
• use empirical Wasserstein distance Wc,ε(µ̂θ, ν̂) where
µ̂θ = 1

N

∑m
i=1 δxi

• Use L iterations of Sinkhorn’s algorithm : Ê (L)(θ)
• compute L steps of the algorithm
• use this as a proxy for W (µ̂θ, ν)
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Computing the Gradient in Practice
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Figure: Scheme of the loss approximation

• Compute exact gradient of Ê (L)(θ) with autodiff
• Backpropagation through above graph
• Same computational cost as evaluation of Ê (L)(θ)
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Numerical Results on MNIST (L2
cost)

Figure: Samples from MNIST dataset
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Numerical Results on MNIST (L2
cost)

Figure: Fully connected NN with 2 hidden layers
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Numerical Results on MNIST (L2
cost)

Figure: Manifolds in the latent space for various parameters
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Learning the cost [Li et al. ’17,
Bellemare et al. ’17]

• On complex data sets, choice of a good ground metric c is
not trivial

• Use parametric cost function cφ(x , y) = ‖fφ(x)− fφ(y)‖22
(where fφ : X → Rd )

• Optimization problem becomes minmax (like GANs)

minθmaxφW̄cφ,ε(µθ, ν)

• Same approximations but alternate between updating the
cost parameters φ and the measure parameters θ
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Numerical Results on CIFAR
(learning the cost)

Figure: Samples from CIFAR dataset
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Numerical Results on CIFAR
(learning the cost)

Figure: Fully connected NN with 2 hidden layers
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Numerical Results on CIFAR
(learning the cost)

(a) MMD (b) ε = 1000 (c) ε = 10

Figure: Samples from the generator trained on CIFAR 10 for MMD
and Sinkhorn loss (coming from the same samples in the latent space)

Which is better? Not just about generating nice images, but
more about capturing a high dimensional distribution... Hard to
evaluate.
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Shape Registration [Feydy et al.
’17]
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