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  Deep Convolutional Networks
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Part III Inverse problems



Dimensionality Reduction 
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Interactions de d variables x(u): pixels, particules, agents...



      Deep Convolutional  Trees

Cascade of convolutions: no channel connections
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rotated and dilated:

real parts imaginary parts

 Scale separation with Wavelets
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      Fast Wavelet Filter Bank
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Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.
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      Wavelet Filter Bank
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    Wavelet Scattering Network
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preserves norms kSJxk = kxk

kWkxk = kxk ) k|Wkx|� |Wkx
0|k  kx� x

0kLemma : k[Wk, D⌧ ]k = kWkD⌧ �D⌧Wkk  C kr⌧k1

translations invariance and deformation stability:

if D⌧x(u) = x(u� ⌧(u)) then

lim
J!1

kSJD⌧x� SJxk  C kr⌧k1 kxk

      Scattering  Properties

contractive kSJx� SJyk  kx� yk (L2
stability)

Theorem: For appropriate wavelets, a scattering is



LeCun et. al.

Classification Errors

Joan Bruna

 Digit Classification: MNIST

SJx y = f(x)
x

Supervised
Linear classifier

Invariants to specific deformations

Separates di↵erent patterns

Invariants to translations

Linearises small deformations

No learning

Training size Conv. Net. Scattering

50000 0.4% 0.4%



Part II- Unsupervised Learning

Unsupervised learning:

Approximate the probability distribution p(x) of X 2 Rd

given P realisations {xi}iP with potentially P = 1



 Stationary Processes

: stationary vectorSJX =

0
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     Ergodicity and Moments
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1
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with ”weak” ergodicity conditions

Central limit theorem



 Generation of Random Processes

• Reconstruction: compute

˜X which satisfies

with random initialisation and gradient descent.



  Texture Reconstructions Joan Bruna

Ising-critical Turbulence 2D



Original

Paper

Cocktail Party

Representation of Audio Textures
Joan Bruna
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    Max Entropy Canonical Models 

• A representation �(x) = {�k(x)}kK with x 2 Rd

µk = E(�kX) =

Z
�k(x) p(x) dx

maximum entropy: H(p) = �
R
p(x) log p(x) dx

) p(x) = Z
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   Ergodic Microcanonical Model

Rd



 Uniform Distribution on Balls

• Sphere in Rd �x = d

�1/2kxk2 =
⇣
d

�1
dX

k=1

|x(k)|2
⌘1/2

= µ

• Simplex in Rd �x = d

�1kxk1 = d

�1
dX

k=1

|x(k)| = µ



   Scattering Representation
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x(u) , d
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• Scattering coe�cients of order 0, 1 and 2:



   Microcanonical Scattering

Rd



X̃

   Scattering Approximations

X

µ = E(�X)

If



   Ergodic Microcanonical Model

Rd



Singular Ergodic Processes



        Scattering Ising



Stochastic Geometry: Cox Process



           Non-Ergodic Mixture

Rd



Non-Ergodic Microcanonical Mixture

Rd



  Scattering Multifractal Processes

• Scattering coe�cients of order 0, 1 and 2:



Scat Ising at Critical Temperature



 Failures of Audio Synthesis

Original Time Scattering

J. Anden and V. Lostanlen



Time-Frequency Translation Group

|x ?  �| ? �J ||x ?  �| ?  ↵ ?  � | ? �Jt t t t log � t

Time-frequency
wavelet

convolutions

J. Anden and V. Lostanlen



  Joint Time-Frequency Scattering

Original Time Scattering Time/Freq Scattering
J. Anden and V. Lostanlen



x(u)
x1(u, k1)

x2(u, k2)
xJ(u, kJ)

k1 k2

 Part III- Supervised Learning

⇢L1
⇢LJ

xj = ⇢Lj xj�1

xj(u, kj) = ⇢

⇣X

k

xj�1(·, k) ? hkj ,k(u)
⌘

sum across channels

classification

• Lj is a linear combination of convolutions and subsampling:

What is the role of channel connections ?



Environmental Sound Classification

MFCC audio descriptors 0,39

time scattering 0,27

ConvNet 
(Piczak, MLSP 2015) 0,26

time-frequency scattering 0,2

UrbanSound8k: 10 classes 
8k training examples

class-wise average error

air conditioner car horns

children playing dog barks

drilling engine at idle

J. Anden and V. Lostanlen

SJx y = f(x)
x

Supervised
Linear classifier

No learning
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SJ x̃ = = SJx

• Given SJx we want to compute x̃ such that:

  Inverse Scattering Transform
Joan Bruna

then x̃ is equal to x up to a translation.

• If x(u) is a Dirac, or a straight edge or a sinusoid

We shall use m = 2.



With a gradient descent algorithm:

Original images of N2 pixels:

   Sparse Shape Reconstruction
Joan Bruna

m = 2, 2

J
= N : reconstruction from O(log

2
2 N) scattering coe↵.

m = 1, 2

J
= N : reconstruction from O(log2 N) scattering coe↵.



2J = 16

2J = 32

2J = 64

2J = 128 = N

Scattering
Reconstruction

N2
pixels

1.4N2
coe↵.

0.5N2
coe↵.

Multiscale Scattering Reconstructions
Original
Images



    III- Inverse Problems

• Best Linear Method: Least Squares estimate (linear interpolation):

x

y

F

ŷ = (b⌃†
x

b⌃
xy

)x



       Super-Resolution

•Best Linear Method: Least Squares estimate (linear interpolation): 
•State-of-the-art Methods: 

– Dictionary-learning Super-Resolution 
– CNN-based: Just train a CNN to regress from low-res to high-

res. 
– They optimize cleverly a fundamentally unstable metric criterion:

x

y

F

ŷ = (b⌃†
x

b⌃
xy

)x

⇥⇤ = argmin
⇥

X

i

kF (xi,⇥)� yik2 , ŷ = F (x,⇥⇤)



  Scattering Super-Resolution

F

x

y

SL,Jx =

0

@
x ? �2J (u)

|x ?  j1,k1 | ? �2J (u)
||x ?  j1,k1 | ?  j2,k2 | ? �2J (u)

1

A

Lj1,j2J

SL,J x

SL�↵,J x

• Linear estimation in the scattering domain

• No phase estimation: potentially worst PSNR

• Good image quality because of deformation stability



   Super-Resolution Results

Original
 

Linear Estimate Scatteringstate-of-the-art

J. Bruna, P. Sprechmann



   Super-Resolution Results

Original  Best 
Linear Estimate

Scattering 
Estimatestate-of-the-art

J. Bruna, P. Sprechmann



   Super-Resolution Results

Original  Best 
Linear Estimate

Scattering 
Estimatestate-of-the-art

J. Bruna, P. Sprechmann



A - Ising Super-Resolution B - Ising Tomography C - Cox Super-Resolution:       vs Proposed 

   Super-Resolution Results

Original Original

Low-Resolution

Low-Resolution

Scattering

TV Regularization l1 Regularization

Scattering

I. Dokmanic, J. Bruna, M. De Hoop



     Tomography Results

A - Ising Super-Resolution B - Ising Tomography C - Cox Super-Resolution:       vs Proposed Original

Low-Resolution

Scattering

TV Regularization

I. Dokmanic, J. Bruna, M. De Hoop



           Conclusions
• Deep convolutional networks have spectacular high-dimensional 

and generic approximation capabilities. 

• New stochastic models of images for inverse problems. 

• Outstanding mathematical problem to understand deep nets: 
– How to learn representations for inverse problems ?             

Understanding Deep Convolutional Networks, arXiv 2016.


