Unsupervised Learning and

 Inverse Problemswith Deep Neural Networks

Joan Bruna, Stéphane Mallat, Ivan Dokmanic, Martin de Hoop

École Normale Supérieure www.di.ens.fr/data

L_{j} is a sum of spatial convolutions across channels, subsampling $\rho(u)$ is a scalar non-linearity: $\max (u, 0)$ or $|u|$ or \ldots

Part I Architecture Simplification: wavelet scattering
Part II Unsupervised learning: generative models
Part III Inverse problems

ENS Dimensionality Reduction Multiscale

- Why can we learn despite the curse of dimensionality ? Multiscale structures/interactions

Interactions de d variables $x(u)$: pixels, particules, agents...

Regroupement of d interactions in $O(\log d)$

Deep Convolutional Trees

Simplified architecture:

Cascade of convolutions: no channel connections predefined wavelet filters

ENS Scale separation with Wavelets

- Wavelet filter $\psi(u)$:

rotated and dilated: $\psi_{2^{j}, \theta}(u)=2^{-j} \psi\left(2^{-j} r_{\theta} u\right)$
real parts

imaginary parts

$$
x \star \psi_{2^{j}, \theta}(u)=\int x(v) \psi_{2^{j}, \theta}(u-v) d v
$$

- Wavelet transform: $\quad W x=\binom{x \star \phi_{2^{J}}(u)}{x \star \psi_{2^{j}, \theta}(u)}_{j \leq J, \theta} \begin{aligned} & : \text { average } \\ & \text { higher } \\ & \text { frequencies }\end{aligned}$

Preserves norm: $\|W x\|^{2}=\|x\|^{2}$.

Wavelet Filter Bank

ENS
 $$
\rho(\alpha)=|\alpha|
$$

$$
\left|W_{1}\right|
$$

Scale

Wavelet Scattering Network

ENS

Scale

$$
S_{J}=\rho W_{1} \quad \rho W_{2} \quad \cdots \rho W_{J}
$$

$$
\rho(\alpha)=|\alpha|
$$

$$
S_{J} x=\left\{\left|\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}} \star \ldots\right| \star \psi_{\lambda_{m}}\right| \star \phi_{J}\right\}_{\lambda_{k}}
$$

Interactions across scales
 \title{
Scattering Properties
 \title{

Scattering Properties
 $$
S_{J} x=\left(\begin{array}{c}
x \star \phi_{2^{J}} \\
\left|x \star \psi_{\lambda_{1}}\right| \star \phi_{2^{J}} \\
\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \star \phi_{2^{J}} \\
\left|\left|x \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}} \mid \star \phi_{2^{J}} \\
\ldots
\end{array}\right)_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots}=\ldots\left|W_{3}\right|\left|W_{2}\right|\left|W_{1}\right| x
$$

}

Theorem: For appropriate wavelets, a scattering is
contractive $\left\|S_{J} x-S_{J} y\right\| \leq\|x-y\| \quad\left(\mathbf{L}^{2}\right.$ stability) preserves norms $\left\|S_{J} x\right\|=\|x\|$
translations invariance and deformation stability:

$$
\begin{aligned}
& \text { if } D_{\tau} x(u)=x(u-\tau(u)) \text { then } \\
& \qquad \lim _{J \rightarrow \infty}\left\|S_{J} D_{\tau} x-S_{J} x\right\| \leq C\|\nabla \tau\|_{\infty}\|x\|
\end{aligned}
$$

Digit Classification: MNIST

$368 / 796691$ Joan Bruna
6757863485
2179712845
4819018894

No learning
Classification Errors

Training size	Conv. Net.	Scattering
50000	0.4%	0.4%
LeCun et. al.		

ENS Part II- Unsupervised Learning

joint work with Joan Bruna
Unsupervised learning:
Approximate the probability distribution $p(x)$ of $X \in \mathbb{R}^{d}$ given P realisations $\left\{x_{i}\right\}_{i \leq P}$ with potentially $P=1$

Which class of processes can we approximate?

ENS

- Ergodic versus non-ergodic (long-range dependance)
- Capture non-Gaussianity: geometry of realisations

Scattering/Deep Net. of a stationary process $X(t)$

$$
S_{J} X=\left(\begin{array}{c}
X \star \phi_{2^{J}}(t) \\
\left|X \star \psi_{\lambda_{1}}\right| \star \phi_{2^{J}}(t) \\
\left|\left|X \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \star \phi_{2^{J}}(t) \\
\left|\left|\left|X \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}}\right| \star \phi_{2^{J}}(t) \\
\cdots
\end{array}\right)_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots}: \text { stationary vector }
$$

Ergodicity and Moments

Scattering transform of a stationary vector $X \in \mathbb{R}^{d}$ maximum scale: $2^{J}=d$

Generation of Random Processes

Scattering transform of a stationary vector $X \in \mathbb{R}^{d}$ maximum scale: $2^{J}=d$

$$
S_{J} X=\left(\begin{array}{c}
d^{-1} \sum_{u=1}^{d} X(u) \\
d^{-1}\left\|X \star \psi_{\lambda_{1}}\right\|_{1} \\
d^{-1}\left\|\left|X \star \psi_{\lambda_{1}}\right| \nmid \psi_{\lambda_{2}}\right\|_{1} \\
d^{-1}\left\|| | X \star \psi_{\lambda_{2}}\left|\star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}}\right\|_{1} \\
\cdots
\end{array}\right)_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots}
$$

- Reconstruction: compute \tilde{X} which satisfies

$$
S_{J} \tilde{X} \approx S_{J} X
$$

with random initialisation and gradient descent.

Gaussian process model with d second order moments

Reconstructions from $\left\|X \star \psi_{\lambda_{1}}\right\|_{1}$ and $\left\|\left|X \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right\|_{1}$ $O\left(\log ^{2} d\right)$ scattering coefficients

Representation of Audio Textures

Max Entropy Canonical Models

- A representation $\Phi(x)=\left\{\phi_{k}(x)\right\}_{k \leq K}$ with $x \in \mathbb{R}^{d}$
- Canonical distribution $p(x)$ of X satisfies

$$
\mu_{k}=\mathbb{E}\left(\phi_{k} X\right)=\int \phi_{k}(x) p(x) d x
$$

with maximum entropy: $H(p)=-\int p(x) \log p(x) d x$

$$
\Rightarrow \quad p(x)=Z^{-1} \exp \left(-\sum_{k} \theta_{k} \phi_{k}(x)\right)
$$

Gaussian, Markov random field models

- Problem: in other cases we can't compute the θ_{k}.
- If concentration: $\operatorname{Prob}(|\Phi X-\mu|<\epsilon) \underset{d \rightarrow \infty}{\longrightarrow}$

$$
\text { with } \mu=\mathbb{E}(\Phi X)
$$

A microcanonical model \tilde{X} has a distribution \tilde{p} of maximum entropy conditioned to $\Phi \tilde{X}=\mu$ which is uniform in $\Phi^{-1}(\mu)$ (if compact)

Uniform Distribution on Balls

- Sphere in $\mathbb{R}^{d} \quad \Phi x=d^{-1 / 2}\|x\|_{2}=\left(d^{-1} \sum_{k=1}^{d}|x(k)|^{2}\right)^{1 / 2}=\mu$
not a low-dimensional manifold!

Borel 1914
Diaconis, Freedman 1987
$\tilde{X}(1), \ldots, \tilde{X}(K) \underset{d \rightarrow \infty}{\longrightarrow}$.i.i.d Gaussian $\sim e^{-u^{2} / 2 \sigma^{2}}$

- Simplex in $\mathbb{R}^{d} \quad \Phi x=d^{-1}\|x\|_{1}=d^{-1} \sum_{k=1}^{d}|x(k)|=\mu$
$\tilde{X}(1), \ldots, \tilde{X}(K) \underset{d \rightarrow \infty}{\longrightarrow}$ i.i.d Exponential $\sim e^{-\lambda|u|}$

Scattering Representation

- Scattering coefficients of order 0,1 and 2 ; up to scale 2^{J}

$$
\Phi x=\left\{d^{-1} \sum_{u} x(u), d^{-1}\left\|x \star \psi_{\lambda_{1}}\right\|_{1}, d^{-1}\left\|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right\|_{1}\right\}
$$

$\Phi^{-1}(\mu)$ is an intersection of about J^{2} polytopes in \mathbb{R}^{d}
Complex high-dimensional geometry

- Reproduces \mathbf{l}^{2} norms
$d^{-1}\left\|x \star \psi_{\lambda_{1}}\right\|_{2}^{2}=d^{-2}\left\|x \star \psi_{\lambda_{1}}\right\|_{1}^{2}+\sum_{\lambda_{2}} d^{-2}\left\|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right\|_{2}^{2}+$ higher order
Specify $\left\{\left\|x \star \psi_{\lambda_{1}}\right\|_{2}\right\}_{\lambda_{1}}$: intersection of $\mathbf{l}^{\mathbf{2}}$ balls

Microcanonical Scattering

Proposition If $X(u)$ is stationary and $X(u)$ and $X(v)$ are independent for $|u-v| \geq \Delta$
then $\lim _{d \rightarrow \infty} \mathbb{E}\left(\|\Phi X-\mu\|^{2}\right)=0$

Scattering Approximations

Theorem If $X(u)$ is stationary and
$X(u)$ and $X(v)$ are independent for $|u-v| \geq \Delta$ If Typical of \tilde{X} is typical of X
and $\lim _{d \rightarrow \infty} \mathbb{E}\left(\left|d^{-1} \log p(\tilde{X})-H(p)\right|^{2}\right)=0$ then
$\tilde{X}(1), \ldots, \tilde{X}(K)$ converges in probability to $X(1), \ldots, X(K)$

Ergodic Microcanonical Model

If X is Gaussian stationary
with a bounded and regular spectrum
then for a scattering with appropriate wavelets
$\tilde{X}(1), \ldots, \tilde{X}(K)$ converges in probability to $X(1), \ldots, X(K$ up to an arbitrary small error ϵ

ENS Singular Ergodic Processes

Scattering Microcanonical \tilde{X}

Concentration of $\Phi X \quad$ Typical of \tilde{X} is typical of X

Why?

Scattering Ising

$$
x(u) \in\{0,1\} \quad p(x)=Z^{-1} \exp \left(\frac{1}{T} \sum_{\left(u, u^{\prime}\right) \in C_{I}} x(u) x\left(u^{\prime}\right)\right)
$$

Ising X for $T \geq T_{\text {critic }} \quad$ Microcanonical Scat \tilde{X}

Concentration of $\Phi X \quad$ Typical of \tilde{X} is typical of X

d	$\frac{\mathbb{E}\left(\\|\Phi(X)-\mathbb{E} \Phi(X)\\|^{2}\right)}{\\|\mathbb{E} \Phi(X)\\|^{2}}$	$\frac{\mathbb{E}\left(\left\|d^{-1} \log p(\tilde{X})-H(p)\right\|^{2}\right)}{H(p)^{2}}$
2^{12}	$3 \cdot 10^{-4}$	$1 \cdot 10^{-5}$
2^{14}	$1 \cdot 10^{-4}$	$5 \cdot 10^{-6}$

Bernoulli with random density $\lambda(u)$
Cox X Ergodic Microcanonical Scat \tilde{X}

Concentration of $\Phi X \quad$ Typical of \tilde{X} is typical of X

d	$\frac{\mathbb{E}\left(\\|\Phi(X)-\mathbb{E} \Phi(X)\\|^{2}\right)}{\\|\mathbb{E}(X)\\|^{2}}$	$\frac{\mathbb{E}\left(\left\|d^{-1} \log p(\tilde{X})-H(p)\right\|^{2}\right)}{H(p)^{2}}$
2^{12}	$3 \cdot 10^{-4}$	
2^{14}	$1 \cdot 10^{-4}$	

Non-Ergodic Mixture

- Non-ergodicity: $\Phi(X)$ does not concentrate in all directions

Maximum entropy conditioned to $\Phi \tilde{X}$ having a density w micro canonical mixture \tilde{X} weighted by the density w of ΦX

ENS Non-Ergodic Microcanonical Mixture-

- Non-ergodicity: $\Phi(X)$ does not concentrate in all directions

Theorem A microcanonical mixture has a density \tilde{p} with

$$
\begin{gathered}
\tilde{p}(x)=\frac{w(\Phi x)}{h(\Phi x)} \\
\text { with } h(y)=\int_{\Phi^{-1}(y)}\left|J_{L} \Phi x\right|^{-1} d \mathcal{H}^{d-L}(x)
\end{gathered}
$$

which is singular only if $\Phi x \in \partial \Omega$

融 Scattering Multifractal Processes

- Multifractal processes with stationary increment have non-ergodic low-frequencies: long-range correlations.
- Wavelet coefficients $X \star \psi_{\lambda}(u)$ decorrelate at larger scales
- Scattering coefficients of order 0,1 and 2 :

$$
\Phi X=\underset{\text { non-ergodic }}{\left\{d^{-1} \sum_{u} X(u), d^{-1}\left\|X \star \psi_{\lambda_{1}}\right\|_{1}, d^{-1}\left\|\left|X \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right\|_{1}\right\}}
$$

\Rightarrow one-dimensional mixture weight w (non-ergodic part) can be estimated from few examples: manifold.

ENS Scat Ising at Critical Temperature

$$
p(x)=Z^{-1} \exp \left(\frac{1}{T} \sum_{\left(u, u^{\prime}\right) \in C_{I}} x(u) x\left(u^{\prime}\right)\right)
$$

Ising X for $T=T_{\text {critic }}$
Non ergodic

Microcanonical Scat \tilde{X}

Concentration of ΦX without low-freq. Typical of \tilde{X} is typical of X

d	$\frac{\mathbb{E}\left(\\|\Phi(X)-\mathbb{E} \Phi(X)\\|^{2}\right)}{\\|\mathbb{E} \Phi(X)\\|^{2}}$	$\frac{\mathbb{E}\left(\left\|d^{-1} \log p(\tilde{X})-H(p)\right\|^{2}\right)}{H(p)^{2}}$
2^{12}	$8 \cdot 10^{-3}$	$2 \cdot 10^{-3}$
2^{14}	$2.5 \cdot 10^{-3}$	$2 \cdot 10^{-4}$

Failures of Audio Synthesis

Typical of \tilde{X} is not typical of X

- Missing frequency connections \Rightarrow misalignments
\Rightarrow incorporate two-dimensional translations in time-frequency

Time-Frequency Translation Group
 $J . A n d e n$ and V. Lostanlen

Joint Time-Frequency Scattering
J. Anden and V. Lostanl

Original

Time Scattering

Time/Freq Scattering

Part III- Supervised Learning

- L_{j} is a linear combination of convolutions and subsampling:

$$
x_{j}\left(u, k_{j}\right)=\rho\left(\sum_{\substack{k \\ \text { sum across channels }}} x_{j-1}(\cdot, k) \star h_{k_{j}, k}(u)\right)
$$

What is the role of channel connections ?
Invariant over groups of operators other than translations

UrbanSound8k: 10 classes
8 k training examples
class-wise average error

MFCC audio descriptors	0,39
time scattering	0,27
ConvNet	0,26
(Piczak, MLSP 2015)	0,2

ANS Lerse Scattering Transform

Joan Bruna

- Given $S_{J} x$ we want to compute \tilde{x} such that:

$$
S_{J} \tilde{x}=\left(\begin{array}{c}
\tilde{x} \star \phi_{2^{J}} \\
\left|\tilde{x} \star \psi_{\lambda_{1}}\right| \star \phi_{2^{J}} \\
\ldots \\
\left|\left|\tilde{x} \star \psi_{\lambda_{1}}\right| \star . .\left|\star \psi_{\lambda_{m}}\right| \star \phi_{2^{J}}\right.
\end{array}\right)_{\lambda_{1}, \ldots, \lambda_{m}}=\left(\begin{array}{c}
x \star \phi_{2^{J}} \\
\left|x \star \psi_{\lambda_{1}}\right| \star \phi_{2^{J}} \\
\ldots \\
\left|\left|\left|x \star \psi_{\lambda_{1}}\right| \star . . \star \psi_{\lambda_{m}}\right| \star \phi_{2^{J}}\right.
\end{array}\right)_{\lambda_{1}, \ldots, \lambda_{m}}=S_{J} x
$$

We shall use $m=2$.

- If $x(u)$ is a Dirac, or a straight edge or a sinusoid then \tilde{x} is equal to x up to a translation.

Ans Sparse Shape Reconstruction

With a gradient descent algorithm:
Original images of N^{2} pixels:

$m=1,2^{J}=N:$ reconstruction from $O\left(\log _{2} N\right)$ scattering coeff.

$m=2,2^{J}=N:$ reconstruction from $O\left(\log _{2}^{2} N\right)$ scattering coeff.

III- Inverse Problems

x

- Best Linear Method: Least Squares estimate (linear interpolation):

$$
\hat{y}=\left(\widehat{\Sigma}_{x}^{\dagger} \widehat{\Sigma}_{x y}\right) x
$$

x

y

- Best Linear Method: Least Squares estimate (linear interpolation):
- State-of-the-art Methods:

$$
\hat{y}=\left(\widehat{\Sigma}_{x}^{\dagger} \widehat{\Sigma}_{x y}\right) x
$$

- Dictionary-learning Super-Resolution
- CNN-based: Just train a CNN to regress from low-res to highres.
- They optimize cleverly a fundamentally unstable metric criterion:

$$
\Theta^{*}=\arg \min _{\Theta} \sum_{i}\left\|F\left(x_{i}, \Theta\right)-y_{i}\right\|^{2} \quad, \hat{y}=F\left(x, \Theta^{*}\right)
$$

Scattering Super-Resolution

y

$$
S_{L, J} x=\left(\begin{array}{c}
x \star \phi_{2^{J}}(u) \\
\left|x \star \psi_{j_{1}, k_{1}}\right| \star \phi_{2^{J}}(u) \\
\left|\left|x \star \psi_{j_{1}, k_{1}}\right| \star \psi_{j_{2}, k_{2}}\right| \star \phi_{2^{J}}(u)
\end{array}\right)_{L \leq j_{1}, j_{2} \leq J}
$$

- Linear estimation in the scattering domain
- No phase estimation: potentially worst PSNR
- Good image quality because of deformation stability

Original
Best Linear Estimate
state-of-the-art

Scattering Estimate

$\operatorname{ARS}^{\text {ENS }}$ Super-Resolution Results

Original

Best Linear Estimate
state-of-the-art

Scattering Estimate

Conclusions

- Deep convolutional networks have spectacular high-dimensional and generic approximation capabilities.
- New stochastic models of images for inverse problems.
- Outstanding mathematical problem to understand deep nets:
- How to learn representations for inverse problems?
(Not) Understanding Deep Convolutional Networks, arXiv 2016.

