Unsupervised Learning and Inverse Problems

with Deep Neural Networks

Joan Bruna, Stéphane Mallat, Ivan Dokmanic, Martin de Hoop

École Normale Supérieure www.di.ens.fr/data

 L_j is a sum of spatial convolutions across channels, subsampling $\rho(u)$ is a scalar non-linearity: $\max(u, 0)$ or |u| or ...

 ${\bf Part \ I \ Architecture \ Simplification: \ wavelet \ scattering}$

Part II Unsupervised learning: generative models

Part III Inverse problems

Dimensionality Reduction Multiscale

• Why can we learn despite the curse of dimensionality ? Multiscale structures/interactions

Interactions de d variables x(u): pixels, particules, agents...

Regroupement of d interactions in $O(\log d)$

Simplified architecture:

Cascade of convolutions: no channel connections predefined wavelet filters

Scale separation with Wavelets

• Wavelet filter $\psi(u)$:

rotated and dilated: $\psi_{2^{j},\theta}(u) = 2^{-j} \psi(2^{-j}r_{\theta}u)$

• Wavelet transform: Wx

$$c = \begin{pmatrix} x \star \phi_{2^{J}}(u) \\ x \star \psi_{2^{j},\theta}(u) \end{pmatrix}_{\substack{j \leq J,\theta}{} : \text{ higher frequencies}}$$

Preserves norm: $||Wx||^2 = ||x||^2$.

 2^J Scale

Wavelet Filte<mark>r Bank</mark>

Wavelet Scattering Network

ENS

$$\rho(\alpha) = |\alpha| \qquad S_J x = \left\{ |||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2} \star ...| \star \psi_{\lambda_m}| \star \phi_J \right\}_{\lambda_k}$$

Interactions across scales

 $\texttt{Wmm} = \| \texttt{W} [W_k; \mathcal{D}_\tau] \| W_k \texttt{W}_k \mathcal{W}_k \mathcal{D}_k \texttt{W}_k \texttt{W}_$

Theorem: For appropriate wavelets, a scattering is contractive $||S_J x - S_J y|| \le ||x - y||$ (L² stability) preserves norms $||S_J x|| = ||x||$

translations invariance and deformation stability: if $D_{\tau}x(u) = x(u - \tau(u))$ then $\lim_{J \to \infty} \|S_J D_{\tau}x - S_J x\| \le C \|\nabla \tau\|_{\infty} \|x\|$

Digit Classification: MNIST

3681796691

6757863485

2179712845

4819018894

Joan Bruna

$$\longrightarrow y = f(x)$$

Invariants to translations Linearises small deformations No learning Invariants to specific deformations Separates different patterns

Classification Errors

Training size	Conv. Net.	Scattering
50000	0.4%	0.4%
LeCun et. al.		

joint work with Joan Bruna

Unsupervised learning:

Approximate the probability distribution p(x) of $X \in \mathbb{R}^d$ given P realisations $\{x_i\}_{i \leq P}$ with potentially P = 1

Which class of processes can we approximate ?

- Ergodic versus non-ergodic (long-range dependance)
- Capture non-Gaussianity: geometry of realisations

Scattering/Deep Net. of a stationary process X(t)

$$S_{J}X = \begin{pmatrix} X \star \phi_{2^{J}}(t) \\ |X \star \psi_{\lambda_{1}}| \star \phi_{2^{J}}(t) \\ ||X \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \star \phi_{2^{J}}(t) \\ ||X \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{3}}| \star \phi_{2^{J}}(t) \\ \dots \end{pmatrix}$$
: stationary vector $\lambda_{1,\lambda_{2},\lambda_{3},\dots}$

Ergodicity and Moments

Scattering transform of a stationary vector $X \in \mathbb{R}^d$ maximum scale: $2^J = d$

Generation of Random Processes

Scattering transform of a stationary vector $X \in \mathbb{R}^d$ maximum scale: $2^J = d$

$$S_{J}X = \begin{pmatrix} d^{-1} \sum_{u=1}^{d} X(u) \\ d^{-1} \| X \star \psi_{\lambda_{1}} \|_{1} \\ d^{-1} \| \| X \star \psi_{\lambda_{1}} \| \star \psi_{\lambda_{2}} \|_{1} \\ d^{-1} \| \| X \star \psi_{\lambda_{2}} \| \star \psi_{\lambda_{2}} \| \star \psi_{\lambda_{3}} \|_{1} \\ \dots \end{pmatrix}_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \dots}$$

• Reconstruction: compute \tilde{X} which satisfies $S_J \tilde{X} \approx S_J X$

with random initialisation and gradient descent.

Texture Reconstructions Joan Bruna

Texture of d pixels

Statistical Physics Ising-critical Turbulene

Gaussian process model with d second order moments

Reconstructions from $||X \star \psi_{\lambda_1}||_1$ and $|||X \star \psi_{\lambda_1}|| \star \psi_{\lambda_2}||_1$ $O(\log^2 d)$ scattering coefficients

Representation of Audio Textures

Cocktail Party

Max Entropy Canonical Models

- A representation $\Phi(x) = \{\phi_k(x)\}_{k \leq K}$ with $x \in \mathbb{R}^d$
- Canonical distribution p(x) of X satisfies

$$\mu_k = \mathbb{E}(\phi_k X) = \int \phi_k(x) \, p(x) \, dx$$

with maximum entropy: $H(p) = -\int p(x) \log p(x) dx$

$$\Rightarrow p(x) = Z^{-1} \exp\left(-\sum_{k} \theta_k \phi_k(x)\right)$$

Gaussian, Markov random field models

• **Problem:** in other cases we can't compute the θ_k .

Ergodic Microcanonical Model

• If concentration: $\operatorname{Prob}\left(|\Phi X - \mu| < \epsilon\right) \xrightarrow[d \to \infty]{} 1$

with
$$\mu = \mathbb{E}(\Phi X)$$

A microcanonical model \tilde{X} has a distribution \tilde{p} of maximum entropy conditioned to $\Phi \tilde{X} = \mu$ which is uniform in $\Phi^{-1}(\mu)$ (if compact)

Scattering Representation

• Scattering coefficients of order 0, 1 and 2; up to scale 2^{J}

$$\Phi x = \left\{ d^{-1} \sum_{u} x(u) , \ d^{-1} \| x \star \psi_{\lambda_1} \|_1 , \ d^{-1} \| | x \star \psi_{\lambda_1} | \star \psi_{\lambda_2} \|_1 \right\}$$

$$\Phi^{-1}(\mu) \text{ is an intersection of about } J^2 \text{ polytopes in } \mathbb{R}^d$$

Complex high-dimensional geometry

\bullet Reproduces $l^{\mathbf{2}}$ norms

 $d^{-1} \|x \star \psi_{\lambda_1}\|_2^2 = d^{-2} \|x \star \psi_{\lambda_1}\|_1^2 + \sum_{\lambda_2} d^{-2} \||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}\|_2^2 + \text{higher order order}$

Specify $\{\|x \star \psi_{\lambda_1}\|_2\}_{\lambda_1}$: intersection of l^2 balls

Proposition If X(u) is stationary and X(u) and X(v) are independent for $|u - v| \ge \Delta$ then $\lim_{d\to\infty} \mathbb{E}(\|\Phi X - \mu\|^2) = 0$

Scattering Approximations

Theorem If X(u) is stationary and

X(u) and X(v) are independent for $|u - v| \ge \Delta$ If Typical of \tilde{X} is typical of Xand $\lim_{d\to\infty} \mathbb{E}(|d^{-1}\log p(\tilde{X}) - H(p)|^2) = 0$ then

 $\tilde{X}(1), ..., \tilde{X}(K)$ converges in probability to X(1), ..., X(K)

If X is Gaussian stationary with a bounded and regular spectrum then for a scattering with appropriate wavelets $\tilde{X}(1), ..., \tilde{X}(K)$ converges in probability to X(1), ..., X(K)up to an arbitrary small error ϵ **Singular Ergodic Processes**

Concentration of ΦX Typical of \tilde{X} is typical of X

Why?

d	$\frac{\mathbb{E}(\ \Phi(X) - \mathbb{E}\Phi(X)\ ^2)}{\ \mathbb{E}\Phi(X)\ ^2}$	$\left \begin{array}{c} \frac{\mathbb{E}(d^{-1}\log p(X) - H(p) ^2)}{H(p)^2} \right $
2^{12}	$3\cdot 10^{-4}$	$1 \cdot 10^{-5}$
2^{14}	$1 \cdot 10^{-4}$	$5 \cdot 10^{-6}$

Why?

Stochastic Geometry: Cox Process

Bernoulli with random density $\lambda(u)$

$\operatorname{Cox} X$ Ergodic

Microcanonical Scat \tilde{X}

Concentration of ΦX Typical of \tilde{X} is typical of X

d	$\frac{\mathbb{E}(\ \Phi(X) - \mathbb{E}\Phi(X)\ ^2)}{\ \mathbb{E}\Phi(X)\ ^2}$	$\frac{\mathbb{E}(d^{-1}\log p(\tilde{X}) - H(p) ^2)}{H(p)^2}$
2^{12}	$3\cdot 10^{-4}$	
2^{14}	$1 \cdot 10^{-4}$	

Non-Ergodic Mixture

• Non-ergodicity: $\Phi(X)$ does not concentrate in all directions

Maximum entropy conditioned to $\Phi \tilde{X}$ having a density wmicro canonical mixture \tilde{X} weighted by the density w of ΦX Non-Ergodic Microcanonical Mixture

• Non-ergodicity: $\Phi(X)$ does not concentrate in all directions

Theorem A microcanonical mixture has a density \tilde{p} with $\tilde{p}(x) = \frac{w(\Phi x)}{h(\Phi x)}$ with $h(y) = \int_{\Phi^{-1}(y)} |J_L \Phi x|^{-1} d\mathcal{H}^{d-L}(x)$ which is singular only if $\Phi x \in \partial \Omega$ • Multifractal processes with stationary increment have non-ergodic low-frequencies: long-range correlations.

Scattering Multifractal Processes

- Wavelet coefficients $X \star \psi_\lambda(u)$ decorrelate at larger scales
- Scattering coefficients of order 0, 1 and 2:

$$\begin{split} \Phi X &= \left\{ d^{-1} \sum_{u} X(u), d^{-1} \| X \star \psi_{\lambda_1} \|_1, d^{-1} \| | X \star \psi_{\lambda_1} | \star \psi_{\lambda_2} \|_1 \right\} \\ & \text{non-ergodic} \qquad & \text{ergodic} \qquad & \text{ergodic} \end{split}$$

 \Rightarrow one-dimensional mixture weight w (non-ergodic part) can be estimated from few examples: manifold.

Scat Ising at Critical Temperature

$$p(x) = Z^{-1} \exp\left(\frac{1}{T} \sum_{(u,u') \in C_I} x(u) \, x(u')\right)$$

ENS

Microcanonical Scat \tilde{X}

Concentration of ΦX without low-freq.

Typical of X is typical of X

d	$\frac{\mathbb{E}(\ \Phi(X) - \mathbb{E}\Phi(X)\ ^2)}{\ \mathbb{E}\Phi(X)\ ^2}$	$\frac{\mathbb{E}(d^{-1}\log p(\tilde{X}) - H(p) ^2)}{H(p)^2}$
2^{12}	$8\cdot 10^{-3}$	$2\cdot 10^{-3}$
2^{14}	$2.5\cdot 10^{-3}$	$2\cdot 10^{-4}$

Failures of Audio Synthesis

J. Anden and V. Lostanl

Time Scattering \tilde{X}

Typical of \tilde{X} is not typical of X

• Missing frequency connections \Rightarrow misalignments

 \Rightarrow incorporate two-dimensional translations in time-frequency

Time-Frequency Translation Group

J. Anden and V. Lostanlen

Joint Time-Frequency Scattering

Original

Time Scattering

J. Anden and V. Lostanl Time/Freq Scattering

Part III- Supervised Learning

• L_j is a linear combination of convolutions and subsampling:

$$x_{j}(u, k_{j}) = \rho \left(\sum_{\substack{k \\ \text{sum across channels}}} x_{j-1}(\cdot, k) \star h_{k_{j}, k}(u) \right)$$

What is the role of channel connections ? Invariant over groups of operators other than translations Environmental Sound Classification

J. Anden and V. Lostanlen

UrbanSound8k: 10 classes 8k training examples

class-wise average error

MFCC audio descriptors	0,39
time scattering	0,27
ConvNet (Piczak, MLSP 2015)	0,26
time-frequency scattering	0,2

children playing

drilling

car horns

engine at idle

• Given $S_J x$ we want to compute \tilde{x} such that:

$$S_{J}\tilde{x} = \begin{pmatrix} \tilde{x} \star \phi_{2J} \\ |\tilde{x} \star \psi_{\lambda_{1}}| \star \phi_{2J} \\ \dots \\ |||\tilde{x} \star \psi_{\lambda_{1}}| \star \dots | \star \psi_{\lambda_{m}}| \star \phi_{2J} \end{pmatrix} = \begin{pmatrix} x \star \phi_{2J} \\ |x \star \psi_{\lambda_{1}}| \star \phi_{2J} \\ \dots \\ |||x \star \psi_{\lambda_{1}}| \star \dots | \star \psi_{\lambda_{m}}| \star \phi_{2J} \end{pmatrix} = S_{J}x$$

We shall use m = 2.

 If x(u) is a Dirac, or a straight edge or a sinusoid then x̃ is equal to x up to a translation.

Sparse Shape Reconstruction

Joan Bruna

With a gradient descent algorithm:

Original images of N^2 pixels:

$m = 1, 2^J = N$: reconstruction from $O(\log_2 N)$ scattering coeff.

$m = 2, 2^J = N$: reconstruction from $O(\log_2^2 N)$ scattering coeff.

Multiscale Scattering Reconstructions

Original Images N^2 pixels

Scattering Reconstruction $2^{J} = 16$ $1.4 N^2$ coeff.

 $2^{J} = 32$ $0.5 N^2$ coeff.

 $2^{J} = 64$

 $2^J = 128 = N$

• Best Linear Method: Least Squares estimate (linear interpolation): $\hat{y} = (\widehat{\Sigma}_x^{\dagger} \widehat{\Sigma}_{xy}) x$

Super-Resolution

F

Y

- Best Linear Method: Least Squares estimate (linear interpolation):
- State-of-the-art Methods:

 \mathcal{X}

 $\hat{y} = (\widehat{\Sigma}_x^\dagger \widehat{\Sigma}_{xy}) x$

- -Dictionary-learning Super-Resolution
- -CNN-based: Just train a CNN to regress from low-res to high-res,
- -They optimize cleverly a fundamentally unstable metric criterion:

$$\Theta^* = \arg\min_{\Theta} \sum_{i} \|F(x_i, \Theta) - y_i\|^2 \quad , \ \hat{y} = F(x, \Theta^*)$$

- Linear estimation in the scattering domain
- No phase estimation: potentially worst PSNR
- Good image quality because of deformation stability

Super-Resolution Results J. Bruna, P. Sprechmann

Original

Linear Estimate

state-of-the-art

Scattering

Super-Resolution Results

J. Bruna, P. Sprechmann

Original

Best Linear Estimate

state-of-the-art

Scattering Estimate

Super-Resolution Results

J. Bruna, P. Sprechmann

Original

ENS

Best Linear Estimate

state-of-the-art

Scattering Estimate

Super-Resolution Results

I. Dokmanic, J. Bruna, M. De Hoop

Low-Resolution

ENS

Scattering

Low-Resolution

Tomography Results

I. Dokmanic, J. Bruna, M. De Hoop TV Regularization

Original

ENS

Low-Resolution

Scattering

Conclusions

- Deep convolutional networks have spectacular high-dimensional and generic approximation capabilities.
- New stochastic models of images for inverse problems.
- Outstanding mathematical problem to understand deep nets:
 How to learn representations for inverse problems ?

(Not) Understanding Deep Convolutional Networks, arXiv 2016.