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Motivation

Frequent problem in medical imaging (MRI, CT) and computational
geometry: how to reconstruct a volume from a few slices (or more
generally from partial data)?



Motivation



Formulation with inner / outer constraints
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Formulation with inner / outer constraints

What is a ”good shape” satisfying the constraints?



Geometric optimization in real life



Modeling

Let ωint , ωext ⊂ RN

Geometric optimization problem

inf
{
J(E ) | ωint ⊂ E ⊂ RN r ωext

}
where J is a geometric energy

I Natural choice: J=perimeter or Willmore energy

I A natural topology is the L1 topology of characteristic functions of
sets

I The problem is however ill-posed (at least for the perimeter) when
|ωint | = |ωext | = 0.



Perimeter in the BV sense

Perimeter

E has finite perimeter if its characteristic function 1E ∈ BV
Denote P(E ) = TV (1E ) its perimeter.

The perimeter functional is lower semicontinuous for the L1 topology.

P(E ) = length(∂E ) P(E ) = area(∂E )



Perimeter in the BV sense

Perimeter

E has finite perimeter if its characteristic function 1E ∈ BV
Denote P(E ) = TV (1E ) its perimeter.

The perimeter functional is lower semicontinuous for the L1 topology.

P(E ) 6= length(∂E )
P(E ) 6= length(∂E )



Natural formulation of the reconstruction problem for the
perimeter

inf
{
P(E ) | ωint ⊂ E 1, ωext ⊂ E 0

}
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Bernoulli-Euler elastic energy in R2

× ×

××

1/κ

γ

Curvature

Let γ be a C 2 curve in R2,

κ =
det(γ′′, γ′)

|γ′|3

Bernoulli-Euler energy

Let E be a set with C 2 boundary,

W (E ) =

∫
∂E
κ2dH1.



Willmore energy (in R3)

Mean curvature

Let M = C 2 surface in R3,

H =
1

2
(κ1 + κ2)

κ1, κ2: principal curvatures

Willmore energy

If E has C 2 boundary ∂E ,

W (E ) =

∫
∂E

H2dH2.
image credits: Wikipedia



Natural formulation of the reconstruction problem for the
Willmore energy

The Willmore energy is not lower semicontinuous in L1.

For minimization purposes, use its relaxation W (i.e. its lower
semicontinuous envelope).

We address the following problem:

inf
{
W (E ) | ωint ⊂ E 1, ωext ⊂ E 0

}



Approximation of the problem
I: Perimeter approximation

Thus,

∫
ε|∇uε|2dx ≈

1

ε
Area ≈ 1

ε
εP(E ) = P(E ) as ε→ 0.

However, any constant function has zero energy! How to force uε to be
close to a characteristic function, i.e. a binary function?



Perimeter approximation

Use a double-well potential, for instance G (s) = 1
2s

2(1− s)2.

0 1

G

If sup
ε

(∫
1

ε
G (uε)dx

)
< +∞ then uε → 0 or 1 a.e. as ε→ 0.

Therefore, uε approximates a characteristic function.



The Cahn-Hilliard functional

(Van der Waals)-Cahn-Hilliard energy

The phase-field approximation of perimeter is given by

Pε(u) =

∫ (
ε

2
|∇u|2 +

1

ε
G (u)

)
dx

E
1E E

uε
ε

where G is a double-well potential.

0 1

G e.g.,

G (s) =
1

2
s2(1− s)2



Phase-field approximation of perimeter

Convergence of Pε (Modica, Mortola - 1977)

Pε converges to

P(u) =

{
λP(E ) si u = 1E ∈ BV
+∞ otherwise

in the sense of Γ-convergence

where λ is a constant depending only on potential G .

Property of Γ-convergence

Let X be a metric space and (Fε) a sequence of equicoercive functionals
converging to F in the sense of Γ-convergence in X . If uε is a minimizer of
Fε, then there exists a minimizer u of F , s.t. uε → u.



Optimal profile

One can define the phase-field optimal profile associated with E :

uε(x) = q

(
1

ε
ds(x ,E )

)
with q(s) =

1

2
(1− tanh(

s

2
))

1

0

q Signed distance

ds(x ,E ) = d(x ,E )−d(x ,RNrE )

Convergences

For a bounded set E

I uε → 1E

I Pε(uε)→ λP(E ) if E has finite perimeter

as ε→ 0.



Phase field approximation of the Willmore energy

The L2-gradient of Pε satisfies

−∇L2Pε(u) = ε∆u − 1

ε
G ′(u).

The gradient flow of perimeter is the mean curvature flow and
−∇L2Pε(uε) approximates the mean curvature of ∂E in the transition zone
of uε when uε ≈ 1E .

Approximation of the Willmore energy

In R2 and R3, the energy

u 7→ Pε(u) + Wε(u) = Pε(u) +

∫
1

2ε

(
ε∆u − 1

ε
G ′(u)

)2

dx

Γ-converges to E 7→ λ(P(E ) + W (E )) if E is C 2 and compact

I De Giorgi + Bellettini, Paolini (1993) + Röger, Schätzle (2006)



Optimal profile

With the same phase-field profile associated with E

uε(x) = q

(
1

ε
ds(x ,E )

)
one has

Convergences

For a bounded set E

I uε → 1E

I Pε(uε)→ λP(E ) if E has finite perimeter

I Wε(uε)→ λW (E ) if ∂E is C 2

as ε→ 0.



Inclusion-exclusion constraints

Let ωint , ωext ⊂ RN

Geometric optimization problem

inf{J(E ) | ωint ⊂ E 1, ωext ⊂ E 0}

where J is either P, or W

One defines obstacle constraints:

uintε (x) = q

(
1

ε
ds(x , ωint)

)
and uextε (x) = 1− q

(
1

ε
ds(x , ωext)

)

Key property

ωint ⊂ E ⊂ RN r ωext ⇐⇒ uintε 6 uε 6 uextε

In the phase field approximation, constraints can be interpreted as a
linear obstacle problem!



Numerical scheme for perimeter

Approximating a solution to

min{Pε(u) | uintε 6 u 6 uextε }

I Initialize u0;
I At step n, given un, use a splitting method:

I un+1/2 is obtained by one step of an implicit discrete L2 gradient flow
for Pε, i.e.

un+1/2 − un = δt(ε∆un+1/2 − 1

ε
G ′(un+1/2) (discrete Allen-Cahn equation)

I Get un+1 from un+1/2 by projecting onto the constraints

uintε 6 u 6 uextε



Implicit discrete gradient flow

Finding un+1/2 is equivalent to finding a fixed point of the map:

v 7→ (Id − δtε∆)−1
[(

un +
δt
ε
G ′(v)

)]
.

Picard iterations give a stable scheme, and solving in Fourier domain
provides an excellent spatial accuracy



Matlab code (projection is embedded into the fixed point
scheme)



Numerical scheme for Willmore

Same principle, but now the L2 flow is:{
∂tv = ∆µ− 1

ε2
G ′′(v)µ,

µ = 1
εG
′(v)− ε∆v ,

It can be discretized at step n as{
un+1/2 = un + δt

[
∆µn+1/2 − 1

ε2
G ′′(un+1/2)µn+1/2

]
µn+1/2 = 1

εG
′(un+1/2)− ε∆un+1/2.

whose solution (un+1/2, µn+1/2) is a fixed point of the map:

v 7→
(
Id −δt∆
ε∆ Id

)−1(
un − δt

ε G
′′(u)µ

1
ε2
G ′(u)

)
,

Again, an efficient and accurate scheme can be designed using Fourier
transform.



First experiments
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Interpretation

In some cases, the energy

P1,ε(uε) =

{
Pε(u) if uintε 6 uε 6 uextε

+∞ otherwise

converges to
F1(u) = λ(P(E ) +H(E ))

if u = 1E , and uε → u as ε→ 0

I H(E ) = length (in 2D) or

area (in 3D) of the set

(E 0 ∩ ωint)
⋃

(E 1 ∩ ωout)

However, the term λH(E ) may favor constraints violation



Constraints violation

A situation where violating the outer constraint is more favorable for F1:

F1(left configuration) < F1(right configuration)

In contrast, defining F2(E ) = λ(P(E ) + 2H(E ))
one has

F2(left configuration) > F2(right configuration)



Remedy: use fat constraints

Thicken the constraints to give them volume

ωint
√
εΩint

ε

The function U int
ε (x) = q

(
1
εds(x ,Ωint

ε )
)

takes values in [0, 1].

ωint

U int
ε = 1



Convergence result

Theorem (Bretin, Dayrens, M.)

The energy

P2,ε(u) =

{
Pε(u) si U int

ε 6 u 6 Uext
ε

+∞ sinon

Γ-converges to
F2(u) = λ(P(E ) + 2H(E ))

if u = 1E , as ε→ 0

I Minimal sets for F2 satisfy inclusion-exclusion constraints in
reasonable cases.

I Characterizing the Γ-limit for the Willmore energy is delicate due to
the non locality and ghost parts.



Numerical experiments
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3D reconstruction with Willmore energy

Reconstruction of a 3D brain image from real MRI slices



Confined elastica (i.e. a minimizer of the constrained
Bernoulli-Euler energy)
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Can be used for smoothing pixellized surfaces

cf Bretin, Lachaud, Oudet, 2011 where was used a penalization of the
constraints violation set volume (acting as a repulsion force)



Other ”slices”



Alternative partial data



Joint reconstruction of several domains

The method is applied jointly to several phases u1, u2, . . . un in two cases:

I Disjoint phases: prescribe
∑

i ui ≤ 1

I Nested phases: prescribe u1 ≤ u2 · · · ≤ un



Joint reconstruction of several domains

Two disjoint domains



Joint reconstruction of several domains
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Joint reconstruction of several domains

Two disjoint domains (two phases segmentation of MRI data)



Joint reconstruction of several domains

Several disjoint domains



Conclusion

I Our model has no topological prior;

I Can be adapted to many situations;

I But limited to volume reconstruction; what about surfaces with
boundary?

I Stable, fast, accurate numerical schemes can be designed;

I Extension to the anisotropic case is possible;

I Theoretical characterization of the constrained relaxed Willmore
energy is an open problem.


