Reconstruction de volumes a partir de coupes
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Motivation

Frequent problem in medical imaging (MRI, CT) and computational
geometry: how to reconstruct a volume from a few slices (or more
generally from partial data)?
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Formulation with inner / outer constraints
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Formulation with inner / outer constraints

What is a "good shape” satisfying the constraints?



Geometric optimization in real life
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Modeling
Let wint wext C RN

Geometric optimization problem
inf {J(E) | w™ c EcRV < weXt}

where J is a geometric energy

» Natural choice: J=perimeter or Willmore energy

» A natural topology is the L topology of characteristic functions of
sets

» The problem is however ill-posed (at least for the perimeter) when
|wint| — |CL)eXt| =0.



Perimeter in the BV sense

Perimeter

E has finite perimeter if its characteristic function 1z € BV
Denote P(E) = TV(1g) its perimeter.

The perimeter functional is lower semicontinuous for the L! topology.

P(E) = length(OE) P(E) = area(9E)



Perimeter in the BV sense
Perimeter

E has finite perimeter if its characteristic function 1g € BV
Denote P(E) = TV/(1g) its perimeter.

The perimeter functional is lower semicontinuous for the L' topology.

P(E) # length(JE) P(E) # length(JE)
engt



Natural formulation of the reconstruction problem for the
perimeter

inf { P(E) | w™ C E', w™* C E%}
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Bernoulli-Euler elastic energy in R?

° Curvature

Let v be a C? curve in R?,

det //’ /
. (7/ 37)
o

Bernoulli-Euler energy
Let E be a set with C? boundary,

W(E) = / K2dH.
OE




Willmore energy (in R3)

Mean curvature
Let M = C? surface in R3, of himenal

curvatures

1
H = E(Hl -+ I€2)

K1, k2. principal curvatures

Willmore energy
If E has C? boundary OE,

W(E)= | H2aH>.
(£) /aE image credits: Wikipedia




Natural formulation of the reconstruction problem for the
Willmore energy

The Willmore energy is not lower semicontinuous in L!.

For minimization purposes, use its relaxation W (i.e. its lower
semicontinuous envelope).

We address the following problem:

inf {W(E) | w™ C E', w®* C E%}




Approximation of the problem
|: Perimeter approximation

4 4

1 1
Thus, /€|Vug|2dx ~ SArea gsP(E) =P(E) ase—0.

|Vu.| ~ 1/e

However, any constant function has zero energy! How to force u. to be
close to a characteristic function, i.e. a binary function?



Perimeter approximation
Use a double-well potential, for instance G(s) = 2s%(1 — s)2.
\L~J
0 1

1
If sup (/ gG(ug)dx) < +4oo then u. —+0or1lae ase—0.
3

Therefore, u. approximates a characteristic function.



The Cahn-Hilliard functional

(Van der Waals)-Cahn-Hilliard energy

The phase-field approximation of perimeter is given by

Pu(u) = / <§|VU|2 + éG(u)) dx




Phase-field approximation of perimeter

Convergence of P. (Modica, Mortola - 1977)
P. converges to

P(u) = AP(E) siu=1g€ BV
| +oo otherwise

in the sense of [-convergence

where )\ is a constant depending only on potential G.

Property of [-convergence

Let X be a metric space and (F.) a sequence of equicoercive functionals
converging to F in the sense of [-convergence in X. If u. is a minimizer of
F., then there exists a minimizer u of F, s.t. u. — u.

v




Optimal profile

One can define the phase-field optimal profile associated with E :

u:(x) = gq <ids(x, E)> with  g(s) = %(1 — tanh(%))

1 q Signed distance
W\O ds(x, E) = d(x, E)—d(x,RN\E)J

Convergences
For a bounded set E

> u. — 1

» P.(u:) = AP(E) if E has finite perimeter
as e — 0.




Phase field approximation of the Willmore energy
The L2-gradient of P. satisfies

1
—V2P:(u) = eAu — EG/(U).

The gradient flow of perimeter is the mean curvature flow and
—V 2P(u:) approximates the mean curvature of OE in the transition zone
of u. when u. =~ 1g.

Approximation of the Willmore energy
In R? and R3, the energy

u— Po(u)+ We(u) = P(u) + /2—16 <€Au — ;G’(u)>2dx

[-converges to E — A(P(E) + W(E)) if E is C? and compact

» De Giorgi + Bellettini, Paolini (1993) + Roger, Schatzle (2006)




Optimal profile

With the same phase-field profile associated with E

) = (Latx )

one has

Convergences

For a bounded set E
> u. — 1g
» P.(u:) — AP(E) if E has finite perimeter
> W.(u:) — A\W(E) if OE is C?

ase — 0.




Inclusion-exclusion constraints
Let wint’wext c RN
Geometric optimization problem
inf{J(E) | w'™ C EL, w™t C E%}
where J is either P, or W

One defines obstacle constraints:

. 1 . 1
uM(x)=gq <€ds(x,w’"t)> and u(x)=1-g¢ <6ds(x,we’“)>

Key property

wint CEcC RN N wext — uint <u < uext

In the phase field approximation, constraints can be interpreted as a
linear obstacle problem!



Numerical scheme for perimeter

Approximating a solution to

min{P.(u) | v < u < u®*}

» Initialize u°;
» At step n, given u", use a splitting method:

» u"t1/2 is obtained by one step of an implicit discrete L gradient flow
for P, i.e.
1

- G'(u"*Y/2)  (discrete Allen-Cahn equation)

un+1/2 "= 5t(sAun+1/2 _
» Get u"! from u"t1/2 by projecting onto the constraints

U;_:nt < u < ugxt



Implicit discrete gradient flow

Finding u™1/2 is equivalent to finding a fixed point of the map:

vies (lg — 0,eD) 7t [(u + ‘?G'(v)ﬂ .

Picard iterations give a stable scheme, and solving in Fourier domain
provides an excellent spatial accuracy



Matlab code (projection is embedded into the fixed point
scheme)

W~ uw s wN

FROIHEHRNK Parameters
epsilon = 2/N;
T =1;

delta_t = 1/NA2;
FROOCIOIOS% Heat Kernel
K1 = ones(N,1)*[0:N/2,-N/2+1:-17;

M= 1./(1+4*pin2*delta_t*(K1.A2 + K1'.A2));
HDPINHNE Minimization scheme XN

[ for n=1:T/delta_t,

U=U10;
Ul_O_fourier = fft2(U1_0);
res = 1;

WSRH fixed point iteration XESOOEOOID

[ while res > 10A(-4),

U_plus = ifft2( M.*(U1_O_fourier - delta_t/epsilonA2*ffr2(U.*(U-1).*(2*U-1))));
U_plus = max(min(1-U2,U_plus),Ul);
res = norm((U_plus-U));

U = U_plus;
- end

Ul 0 = U;
~end



Numerical scheme for Willmore

Same principle, but now the L2 flow is:

Orv = Ap — 6%G”(v)u,
p=1G(v)—eAv,

It can be discretized at step n as

un+1/2 — " + 6t [AN"+1/2 . %G//(Un+1/2)ﬂn+1/2]
Mn+1/2 _ %G/(U’H—l/z) _ 8AU”+1/2.

whose solution (u"t1/2, ;1"*1/2) is a fixed point of the map:
-1
li —0eD\ " (0" — S G (u)p
VH(EA Id) < 2G'(v) ’

Again, an efficient and accurate scheme can be designed using Fourier
transform.



First experiments
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Interpretation
In some cases, the energy
P.(u) if ul" < b < ust
Pre(ue) = .
+0o0  otherwise

converges to
Fi(u) = A(P(E) + H(E))

if u=1g,and up > wvase—0

ot » H(E) = length (in 2D) or
w area (in 3D) of the set
(EO e wint) U(El a wout)

However, the term AH(E) may favor constraints violation



Constraints violation

A situation where violating the outer constraint is more favorable for Fi:

A A
ext B ext
w e D w D
E E
c c

F1 (left configuration) < Fy(right configuration)

In contrast, defining Fo(E) = A\(P(E) + 2H(E))
one has
F(left configuration) > F»(right configuration)



Remedy: use fat constraints

Thicken the constraints to give them volume

| ve

wmt

The function U™ (x) = q (1ds(x, Q")) takes values in [0, 1].

int

Uint =1
€



Convergence result

Theorem (Bretin, Dayrens, M.)

The energy
P . Uint < < Uext
= (P s uce
+00 sinon

[-converges to
Fa(u) = A(P(E) + 2H(E))

if u=1g,ase—0

» Minimal sets for F» satisfy inclusion-exclusion constraints in
reasonable cases.

» Characterizing the I'-limit for the Willmore energy is delicate due to
the non locality and ghost parts.



Numerical experiments
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3D reconstruction with Willmore energy

0.8 ! 0.6 . 0.6 ! 0.6 0.4

Reconstruction of a 3D brain image from real MRI slices



Confined elastica (i.e. a minimizer of the constrained
Bernoulli-Euler energy)

An elastica in a fox head



Can be used for smoothing pixellized surfaces

cf Bretin, Lachaud, Oudet, 2011 where was used a penalization of the
constraints violation set volume (acting as a repulsion force)



Other "slices




Alternative partial data

038



Joint reconstruction of several domains
The method is applied jointly to several phases uy, uo, ... u, in two cases:

» Disjoint phases: prescribe > u;j <1

» Nested phases: prescribe u; < up--- < u,



Joint reconstruction of several domains
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Joint reconstruction of several domains
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Joint reconstruction of several domains
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Conclusion

» Our model has no topological prior;
» Can be adapted to many situations;

» But limited to volume reconstruction; what about surfaces with
boundary?

» Stable, fast, accurate numerical schemes can be designed;
» Extension to the anisotropic case is possible;

» Theoretical characterization of the constrained relaxed Willmore
energy is an open problem.



