Reconstruction de volumes à partir de coupes

Simon Masnou Institut Camille Jordan
Université Lyon 1

Séminaire Parisien des Mathématiques Appliquées à l'Imagerie Institut Henri Poincaré

2 février 2017
en collaboration avec
Elie Bretin (INSA Lyon) et François Dayrens (ENS Lyon)

Motivation

(8)

Frequent problem in medical imaging (MRI, CT) and computational geometry: how to reconstruct a volume from a few slices (or more generally from partial data)?

Motivation

Formulation with inner / outer constraints

Formulation with inner / outer constraints

What is a "good shape" satisfying the constraints?

Geometric optimization in real life

Modeling

Let $\omega^{i n t}, \omega^{e x t} \subset \mathbb{R}^{N}$

Geometric optimization problem

$$
\inf \left\{J(E) \mid \omega^{i n t} \subset E \subset \mathbb{R}^{N} \backslash \omega^{e x t}\right\}
$$

where J is a geometric energy

- Natural choice: J=perimeter or Willmore energy
- A natural topology is the L^{1} topology of characteristic functions of sets
- The problem is however ill-posed (at least for the perimeter) when $\left|\omega^{i n t}\right|=\left|\omega^{e x t}\right|=0$.

Perimeter in the BV sense

Perimeter

E has finite perimeter if its characteristic function $\mathbb{1}_{E} \in B V$ Denote $P(E)=T V\left(\mathbb{1}_{E}\right)$ its perimeter.

The perimeter functional is lower semicontinuous for the L^{1} topology.

$$
P(E)=\operatorname{length}(\partial E)
$$

$$
P(E)=\operatorname{area}(\partial E)
$$

Perimeter in the BV sense

Perimeter

E has finite perimeter if its characteristic function $\mathbb{1}_{E} \in B V$ Denote $P(E)=T V\left(\mathbb{1}_{E}\right)$ its perimeter.

The perimeter functional is lower semicontinuous for the L^{1} topology.

$$
P(E) \neq \operatorname{length}(\partial E)
$$

$$
P(E) \neq \operatorname{length}(\partial E)
$$

Natural formulation of the reconstruction problem for the perimeter

$$
\inf \left\{P(E) \mid \omega^{i n t} \subset E^{1}, \omega^{e x t} \subset E^{0}\right\}
$$

Bernoulli-Euler elastic energy in \mathbb{R}^{2}

Curvature

Let γ be a C^{2} curve in \mathbb{R}^{2},

$$
\kappa=\frac{\operatorname{det}\left(\gamma^{\prime \prime}, \gamma^{\prime}\right)}{\left|\gamma^{\prime}\right|^{3}}
$$

Bernoulli-Euler energy

Let E be a set with C^{2} boundary,

$$
W(E)=\int_{\partial E} \kappa^{2} \mathrm{~d} \mathcal{H}^{1}
$$

Willmore energy (in \mathbb{R}^{3})

Mean curvature

Let $M=C^{2}$ surface in \mathbb{R}^{3},

$$
H=\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right)
$$

κ_{1}, κ_{2} : principal curvatures

Willmore energy

If E has C^{2} boundary ∂E,

$$
W(E)=\int_{\partial E} H^{2} \mathrm{~d} \mathcal{H}^{2} .
$$

Natural formulation of the reconstruction problem for the Willmore energy

The Willmore energy is not lower semicontinuous in L^{1}.
For minimization purposes, use its relaxation \bar{W} (i.e. its lower semicontinuous envelope).

We address the following problem:

$$
\inf \left\{\bar{W}(E) \mid \omega^{i n t} \subset E^{1}, \omega^{\text {ext }} \subset E^{0}\right\}
$$

Approximation of the problem

I: Perimeter approximation

Thus, $\int \varepsilon\left|\nabla u_{\varepsilon}\right|^{2} \mathrm{~d} x \approx \frac{1}{\varepsilon}$ Area $\approx \frac{1}{\varepsilon} \varepsilon P(E)=P(E) \quad$ as $\varepsilon \rightarrow 0$.
However, any constant function has zero energy! How to force u_{ε} to be close to a characteristic function, i.e. a binary function?

Perimeter approximation

Use a double-well potential, for instance $G(s)=\frac{1}{2} s^{2}(1-s)^{2}$.

If $\sup _{\varepsilon}\left(\int \frac{1}{\varepsilon} G\left(u_{\varepsilon}\right) \mathrm{d} x\right)<+\infty$ then $u_{\varepsilon} \rightarrow 0$ or 1 a.e. as $\varepsilon \rightarrow 0$.
Therefore, u_{ε} approximates a characteristic function.

The Cahn-Hilliard functional

(Van der Waals)-Cahn-Hilliard energy

The phase-field approximation of perimeter is given by

$$
P_{\varepsilon}(u)=\int\left(\frac{\varepsilon}{2}|\nabla u|^{2}+\frac{1}{\varepsilon} G(u)\right) \mathrm{d} x
$$

where G is a double-well potential.

$$
\begin{gathered}
\text { e.g., } \\
G(s)=\frac{1}{2} s^{2}(1-s)^{2}
\end{gathered}
$$

Phase-field approximation of perimeter

Convergence of P_{ε} (Modica, Mortola - 1977)
P_{ε} converges to

$$
P(u)= \begin{cases}\lambda P(E) & \text { si } u=\mathbb{1}_{E} \in B V \\ +\infty & \text { otherwise }\end{cases}
$$

in the sense of Γ-convergence
where λ is a constant depending only on potential G.

Property of Γ-convergence

Let X be a metric space and $\left(F_{\varepsilon}\right)$ a sequence of equicoercive functionals converging to F in the sense of Γ-convergence in X. If u_{ε} is a minimizer of F_{ε}, then there exists a minimizer u of F, s.t. $u_{\varepsilon} \rightarrow u$.

Optimal profile

One can define the phase-field optimal profile associated with E :

$$
u_{\varepsilon}(x)=q\left(\frac{1}{\varepsilon} d_{s}(x, E)\right) \quad \text { with } \quad q(s)=\frac{1}{2}\left(1-\tanh \left(\frac{s}{2}\right)\right)
$$

Signed distance
 $$
d_{s}(x, E)=d(x, E)-d\left(x, \mathbb{R}^{N} \backslash E\right)
$$

Convergences

For a bounded set E

- $u_{\varepsilon} \rightarrow \mathbb{1}_{E}$
- $P_{\varepsilon}\left(u_{\varepsilon}\right) \rightarrow \lambda P(E)$ if E has finite perimeter
as $\varepsilon \rightarrow 0$.

Phase field approximation of the Willmore energy The L^{2}-gradient of P_{ε} satisfies

$$
-\nabla_{L^{2}} P_{\varepsilon}(u)=\varepsilon \Delta u-\frac{1}{\varepsilon} G^{\prime}(u)
$$

The gradient flow of perimeter is the mean curvature flow and $-\nabla_{L^{2}} P_{\varepsilon}\left(u_{\varepsilon}\right)$ approximates the mean curvature of ∂E in the transition zone of u_{ε} when $u_{\varepsilon} \approx \mathbb{1}_{E}$.

Approximation of the Willmore energy
In \mathbb{R}^{2} and \mathbb{R}^{3}, the energy

$$
u \mapsto P_{\varepsilon}(u)+W_{\varepsilon}(u)=P_{\varepsilon}(u)+\int \frac{1}{2 \varepsilon}\left(\varepsilon \Delta u-\frac{1}{\varepsilon} G^{\prime}(u)\right)^{2} \mathrm{~d} x
$$

「-converges to $E \mapsto \lambda(P(E)+W(E))$ if E is C^{2} and compact

- De Giorgi + Bellettini, Paolini (1993) + Röger, Schätzle (2006)

Optimal profile

With the same phase-field profile associated with E

$$
u_{\varepsilon}(x)=q\left(\frac{1}{\varepsilon} d_{s}(x, E)\right)
$$

one has

Convergences

For a bounded set E

- $u_{\varepsilon} \rightarrow \mathbb{1}_{E}$
- $P_{\varepsilon}\left(u_{\varepsilon}\right) \rightarrow \lambda P(E)$ if E has finite perimeter
- $W_{\varepsilon}\left(u_{\varepsilon}\right) \rightarrow \lambda W(E)$ if ∂E is C^{2}
as $\varepsilon \rightarrow 0$.

Inclusion-exclusion constraints

Let $\omega^{i n t}, \omega^{e x t} \subset \mathbb{R}^{N}$
Geometric optimization problem

$$
\inf \left\{J(E) \mid \omega^{\text {int }} \subset E^{1}, \omega^{e x t} \subset E^{0}\right\}
$$

where J is either P, or W
One defines obstacle constraints:

$$
u_{\varepsilon}^{i n t}(x)=q\left(\frac{1}{\varepsilon} d_{s}\left(x, \omega^{i n t}\right)\right) \quad \text { and } \quad u_{\varepsilon}^{e x t}(x)=1-q\left(\frac{1}{\varepsilon} d_{s}\left(x, \omega^{e x t}\right)\right)
$$

Key property

$$
\omega^{\text {int }} \subset E \subset \mathbb{R}^{N} \backslash \omega^{\text {ext }} \quad \Longleftrightarrow \quad u_{\varepsilon}^{\text {int }} \leqslant u_{\varepsilon} \leqslant u_{\varepsilon}^{\text {ext }}
$$

In the phase field approximation, constraints can be interpreted as a linear obstacle problem!

Numerical scheme for perimeter

Approximating a solution to

$$
\min \left\{P_{\varepsilon}(u) \mid u_{\varepsilon}^{\text {int }} \leqslant u \leqslant u_{\varepsilon}^{e x t}\right\}
$$

- Initialize u^{0};
- At step n, given u^{n}, use a splitting method:
- $u^{n+1 / 2}$ is obtained by one step of an implicit discrete L^{2} gradient flow for P_{ε}, i.e.
$u^{n+1 / 2}-u^{n}=\delta_{t}\left(\varepsilon \Delta u^{n+1 / 2}-\frac{1}{\varepsilon} G^{\prime}\left(u^{n+1 / 2}\right) \quad\right.$ (discrete Allen-Cahn equation)
- Get u^{n+1} from $u^{n+1 / 2}$ by projecting onto the constraints

$$
u_{\varepsilon}^{i n t} \leqslant u \leqslant u_{\varepsilon}^{e x t}
$$

Implicit discrete gradient flow

Finding $u^{n+1 / 2}$ is equivalent to finding a fixed point of the map:

$$
v \mapsto\left(I_{d}-\delta_{t} \varepsilon \Delta\right)^{-1}\left[\left(u^{n}+\frac{\delta_{t}}{\varepsilon} G^{\prime}(v)\right)\right]
$$

Picard iterations give a stable scheme, and solving in Fourier domain provides an excellent spatial accuracy

Matlab code (projection is embedded into the fixed point scheme)

22
23

```
```

```
%%%%%%%%%%%%%%%%% Parameters %%%%%%%%%%%%%%%%%%%
```

```
%%%%%%%%%%%%%%%%% Parameters %%%%%%%%%%%%%%%%%%%
    epsiton = 2/N;
    epsiton = 2/N;
    T =1;
    T =1;
delta_t = 1/N^2;
delta_t = 1/N^2;
%%%%%%%%%%%%%%%%%% Heat Kerne1 %%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% Heat Kerne1 %%%%%%%%%%%%%%%%%%%%%%
    K1 = ones(N,1)*[0:N/2,-N/2+1:-1];
    K1 = ones(N,1)*[0:N/2,-N/2+1:-1];
        M = 1./(1+4* pi^2* de7ta_t* (K1.^2 + K1'.^2));
        M = 1./(1+4* pi^2* de7ta_t* (K1.^2 + K1'.^2));
    %%%%%%%%%%%%%%%% Minimization scheme %%%%%%%%%%%%%%
    %%%%%%%%%%%%%%%% Minimization scheme %%%%%%%%%%%%%%
    for n=1:T/delta_t,
    for n=1:T/delta_t,
    U = U1_0;
    U = U1_0;
    U1_0_fourier = fft2(U1_0);
    U1_0_fourier = fft2(U1_0);
    res = 1;
    res = 1;
    96%%%%%%%%% fixed point iteration %9%%%%%%%%%%%%%%
    96%%%%%%%%% fixed point iteration %9%%%%%%%%%%%%%%
    while res > 10^(-4),
    while res > 10^(-4),
    U_plus = ifft2(M.*(U1_0_fourier - delta_t/epsilon^2*fft2(U.*(U-1).*(2*U-1))));
    U_plus = ifft2(M.*(U1_0_fourier - delta_t/epsilon^2*fft2(U.*(U-1).*(2*U-1))));
    U_plus = max(min(1-U2,U_plus),U1);
    U_plus = max(min(1-U2,U_plus),U1);
    res = norm((U_plus-U));
    res = norm((U_plus-U));
    U = U_plus;
    U = U_plus;
    end
    end
    U1_0 = U;
    U1_0 = U;
```

end

```
```

end

```

\section*{Numerical scheme for Willmore}

Same principle, but now the \(L^{2}\) flow is:
\[
\left\{\begin{array}{l}
\partial_{t} v=\Delta \mu-\frac{1}{\varepsilon^{2}} G^{\prime \prime}(v) \mu \\
\mu=\frac{1}{\varepsilon} G^{\prime}(v)-\varepsilon \Delta v
\end{array}\right.
\]

It can be discretized at step \(n\) as
\[
\left\{\begin{array}{l}
u^{n+1 / 2}=u^{n}+\delta_{t}\left[\Delta \mu^{n+1 / 2}-\frac{1}{\varepsilon^{2}} G^{\prime \prime}\left(u^{n+1 / 2}\right) \mu^{n+1 / 2}\right] \\
\mu^{n+1 / 2}=\frac{1}{\varepsilon} G^{\prime}\left(u^{n+1 / 2}\right)-\varepsilon \Delta u^{n+1 / 2} .
\end{array}\right.
\]
whose solution \(\left(u^{n+1 / 2}, \mu^{n+1 / 2}\right)\) is a fixed point of the map:
\[
v \mapsto\left(\begin{array}{cc}
I_{d} & -\delta_{t} \Delta \\
\varepsilon \Delta & I_{d}
\end{array}\right)^{-1}\binom{u^{n}-\frac{\delta_{t}}{\varepsilon} G^{\prime \prime}(u) \mu}{\frac{1}{\varepsilon^{2}} G^{\prime}(u)}
\]

Again, an efficient and accurate scheme can be designed using Fourier transform.

\section*{First experiments}


Perimeter


Willmore energy

\section*{Interpretation}

In some cases, the energy
\[
P_{1, \varepsilon}\left(u_{\varepsilon}\right)= \begin{cases}P_{\varepsilon}(u) & \text { if } u_{\varepsilon}^{i n t} \leqslant u_{\varepsilon} \leqslant u_{\varepsilon}^{e x t} \\ +\infty & \text { otherwise }\end{cases}
\]
converges to
\[
F_{1}(u)=\lambda(P(E)+\mathcal{H}(E))
\]
if \(u=\mathbb{1}_{E}\), and \(u_{\varepsilon} \rightarrow u\) as \(\varepsilon \rightarrow 0\)

- \(\mathcal{H}(E)=\) length (in 2 D ) or area (in 3D) of the set \(\left(E^{0} \cap \omega^{\text {int }}\right) \bigcup\left(E^{1} \cap \omega^{\text {out }}\right)\)

However, the term \(\lambda \mathcal{H}(E)\) may favor constraints violation

\section*{Constraints violation}

A situation where violating the outer constraint is more favorable for \(F_{1}\) :

\(F_{1}\) (left configuration) \(<F_{1}\) (right configuration)
In contrast, defining \(F_{2}(E)=\lambda(P(E)+2 \mathcal{H}(E))\)
one has
\(F_{2}(\) left configuration \()>F_{2}(\) right configuration \()\)

\section*{Remedy: use fat constraints}

Thicken the constraints to give them volume


The function \(U_{\varepsilon}^{\text {int }}(x)=q\left(\frac{1}{\varepsilon} d_{s}\left(x, \Omega_{\varepsilon}^{\text {int }}\right)\right)\) takes values in \([0,1]\).


\section*{Convergence result}

Theorem (Bretin, Dayrens, M.)
The energy
\[
P_{2, \varepsilon}(u)= \begin{cases}P_{\varepsilon}(u) & \text { si } U_{\varepsilon}^{\text {int }} \leqslant u \leqslant U_{\varepsilon}^{\text {ext }} \\ +\infty & \text { sinon }\end{cases}
\]

「-converges to
\[
F_{2}(u)=\lambda(P(E)+2 \mathcal{H}(E))
\]
if \(u=\mathbb{1}_{E}\), as \(\varepsilon \rightarrow 0\)
- Minimal sets for \(F_{2}\) satisfy inclusion-exclusion constraints in reasonable cases.
- Characterizing the \(\Gamma\)-limit for the Willmore energy is delicate due to the non locality and ghost parts.

\section*{Numerical experiments}

"Thin" perimeter

"Fat" perimeter

\section*{3D reconstruction with Willmore energy}


Reconstruction of a 3D brain image from real MRI slices

\section*{Confined elastica (i.e. a minimizer of the constrained Bernoulli-Euler energy)}


An elastica in a fox head

\section*{Can be used for smoothing pixellized surfaces}

cf Bretin, Lachaud, Oudet, 2011 where was used a penalization of the constraints violation set volume (acting as a repulsion force)

\section*{Other "slices"}



\section*{Alternative partial data}



\section*{Joint reconstruction of several domains}

The method is applied jointly to several phases \(u_{1}, u_{2}, \ldots u_{n}\) in two cases:
- Disjoint phases: prescribe \(\sum_{i} u_{i} \leq 1\)
- Nested phases: prescribe \(u_{1} \leq u_{2} \cdots \leq u_{n}\)

\section*{Joint reconstruction of several domains}



Two disjoint domains

\section*{Joint reconstruction of several domains}



Nested domains

\section*{Joint reconstruction of several domains}


Two disjoint domains (two phases segmentation of MRI data)

\section*{Joint reconstruction of several domains}


Several disjoint domains

\section*{Conclusion}
- Our model has no topological prior;
- Can be adapted to many situations;
- But limited to volume reconstruction; what about surfaces with boundary?
- Stable, fast, accurate numerical schemes can be designed;
- Extension to the anisotropic case is possible;
- Theoretical characterization of the constrained relaxed Willmore energy is an open problem.```

