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Shape-from-shading: A Classic Ill-posed Problem
Given an image I : Ω ⊂ R2 → Rm, Shape-from-Shading (SfS)
consists in inverting the forward photometric model (image
irradiance equation)

I = R(z,ρ, `) (1)

with R a radiance function depending on the unknown
depth z : Ω→ R, surface reflectance ρ : Ω→ Rm, and
incident lighting ` : Ω→ S2.

RGB image:
I

Sculptor’s
explanation:

z

Painter’s
explanation:

ρ

Gaffer’s
explanation:

`

Impossible to tell reflectance from shape and lighting
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Illustration of SfS’s Ill-posedness

Even with known surface reflectance ρ and incident lighting `,
shape estimation by SfS is an ill-posed inverse problem

(Horn, 1970).

Example: two solutions of I = R(z,ρ, `) with I := Lena, white
reflectance (ρ ≡ 1) and frontal lighting (` ≡ [0,0,−1]>):
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Illustration of SfS’s Ill-posedness
Even with known surface reflectance ρ and incident lighting `,

shape estimation by SfS is an ill-posed inverse problem
(Horn, 1970).

Maximal viscosity solution
[Cristiani and Falcone 2007]

Variational solution
[Quéau et al. 2017]
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Parameterization the irradiance equation I = R(z,ρ, `)

Basic Lambertian model:

= �

RGB image
I : Ω→ R3

Albedo
ρ : Ω→ R3

Shading
S(z, `) : Ω→ R

where albedo (Lambertian reflectance) ≡ color, and shading ≡
lighting-geometry interaction.
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Parameterization the irradiance equation I = R(z,ρ, `)

Shading ≡ lighting-geometry interaction:

= � ·

RGB image
I : Ω→ R3

Albedo
ρ : Ω→ R3

Lighting
` ∈ S2

Normals
n(z) : Ω→ S2

where the surface normal n relates to the depth map z in a
nonlinear way:

n(z) =
1√

|f∇z|2 + (−z− < p,∇z >)2

[
f∇z

−z− < p,∇z >

]

(f > 0: length, and p : Ω→ R2: centered pixel coordinates).
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Parameterization the irradiance equation I = R(z,ρ, `)
Extension to first-order spherical harmonics lighting ` ∈ R4:

= � ·

RGB image
I : Ω→ R3

Albedo
ρ : Ω→ R3

Lighting
` ∈ R4

Geometry[
n
1

]
(z) : Ω→ R4

I = R(z,ρ, `) := ρ 〈`,
[
n(z)

1

]
〉

where the surface normal n relates to the depth map z in a
nonlinear way:

n(z) =
1√

|f∇z|2 + (−z− < p,∇z >)2

[
f∇z

−z− < p,∇z >

]
(f > 0: length, and p : Ω→ R2: centered pixel coordinates).
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Variational Solving of SfS Equation I = R(z,ρ, `)
Assume (for now) that ρ and ` are known. Problem reduces to
a nonlinear PDE I := R(∇z).

Horn and Brooks 1986: Regularization

Set (p,q) := ∇z over Ω ⊂ R2

1) Estimate gradient components satisfying integrability:
minp,q

∫∫
Ω (I −R(p,q))2 + λ(∂yp − ∂xq)2

dxdy

2) Integrate: minz
∫∫

Ω ‖(p,q)−∇z‖2 dxdy

Quéau et al. 2017 (EMMCVPR): Hard constraint
(p,q) is conservative by construction→ Integrated
estimation of gradient and depth:

min
p,q,z

∫∫
(I −R(p,q))2

dxdy

s.t. (p,q) = ∇z
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Regularized SfS Model

Minimal surface regularization over Ω

(Incomplete) depth prior over Ω′ ⊂ Ω

min
p,q,z

∫∫
Ω
λ (I −R(p,q))2 + ν

√
1 + p2 + q2 dxdy

+

∫∫
Ω′
µ
(

z − z0
)2
dxdy

s.t. (p,q) = ∇z

By tuning λ, µ and ν, we may achieve SfS, depth denoising and
inpainting, or shading-based depth refinement.
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Solving the Regularized SfS Model using ADMM

(p(k+1),q(k+1)) solution of the local, nonlinear
least-squares problem: use parallel BFGS iterations

min
(p,q)

λ ‖I −R(p,q)‖2`2(Ω) + ν

∥∥∥∥√1 + p2 + q2

∥∥∥∥
`1(Ω)

+
1

2β

∥∥∥(p,q)−∇z(k) + θ(k)
∥∥∥2

`2(Ω)

z(k+1) solution of the global, linear least-squares problem:
use preconditioned conjugate gradient iterations

min
z
µ
∥∥∥z − z0

∥∥∥2

`2(Ω′)
+

1
2β

∥∥∥(p(k+1),q(k+1))−∇z + θ(k)
∥∥∥2

`2(Ω)

Auxiliary variable update
θ(k+1) = θ(k) + (p(k+1),q(k+1))−∇z(k+1)
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Application 1: Depth Refinement for MVS Techniques

Input images I1 and I2

Input depth
map z2

Estimated
lighting

Shading-based refinement
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Application 2: SfS under Natural Illumination

Input RGB Calibrated SfS 3D-reconstruction
image lighting
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Application 3: Depth Refinement for RGB-D Sensors

Input RGB
image

Input depth
map

Estimated
lighting

Denoised (minimal surface)

Shading-based refinement
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Problem with RGB-D Sensors

Depth
image

Shape RGB image

Depth image has
noise and quantization,
missing areas,
coarse resolution.

RGB image has
less noise and quantization,
no missing area,
high resolution.

Goal:
Combine data to get high-resolution shape
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Ill-posedness in Depth Super-Resolution
Given a low-resolution depth map z0 : ΩLR → R, Depth
Super-Resolution (SR) consists in inverting the forward
downsampling model

z0 = Dz

with z : ΩHR → R the (unknown) high-resolution depth, and D a
(rank-deficient) downsampling operator

Genuine surface (black line)
can be approximated in∞
many ways (dashed lines)
given sparse obervations

(rectangles)

⇒ Use SfS to find a shape
interpolation which is
consistent with the
high-resolution RGB image

Peng et al. 2017 (ICCV)
Haefner, Quéau, et al. 2018
(CVPR)
Haefner, Peng, et al. 2019
(PAMI)
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Variational Formulation

min
z:ΩHR→R
ρ:ΩHR→R3

`∈R4

∥∥∥∥I− ρ < `,
[
n(z)

1

]
>

∥∥∥∥2

`2(ΩHR)

+ µ ‖z0 − Dz‖2`2(ΩLR)

+ νP1(z) + λP2(ρ)

P1 is a minimal surface regularization term:

P1(z) = ‖dA(z)‖`1(ΩHR)

=

∥∥∥∥z
f

√
|f∇z|2 + (−z− < p,∇z >)2

∥∥∥∥
`1(ΩHR)

P2 is a Potts regularization term (nondifferentiable and
nonconvex),

P2(ρ) = ‖∇ρ‖`0(ΩHR) =
∑

p∈ΩHR

{
0, if |∇ρ(p)|F = 0,
1, otherwise.
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Numerical Resolution - Splitting Strategy

Normal n and minimal surface term dA depend on z and ∇z:

n(z) := n(z,∇z) =
1√

|f∇z|2 + (−z− < p,∇z >)2

[
f∇z

−z− < p,∇z >

]

dA(z) := dA(z,∇z) =
z
f

√
|f∇z|2 + (−z− < p,∇z >)2

Introduce splitting θ := (z,∇z) to make optimization tractable:

min
z:ΩHR→R
ρ:ΩHR→R3

`∈R4

θ:ΩHR→R3

∥∥∥∥I− ρ < `,
[
n(θ)

1

]
>

∥∥∥∥2

`2(ΩHR)

+ µ ‖z0 − Dz‖2`2(ΩLR)

+ ν ‖dA(θ)‖`1(ΩHR) + λ ‖∇ρ‖`0(ΩHR)

s.t. θ = (z,∇z)
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Numerical Resolution - Multi-block ADMM

Given (ρ(k), `(k),θ(k), z(k)) at iteration k , we update:

ρ(k+1) = argmin
ρ

∥∥∥∥I− ρ < `(k),

[
n(θ(k))

1

]
>

∥∥∥∥2

`2(ΩHR)

+ λ ‖∇ρ‖`0(ΩHR)

`(k+1) = argmin
`

∥∥∥∥I− ρ(k+1) < `,

[
n(θ(k))

1

]
>

∥∥∥∥2

`2(ΩHR)

θ(k+1) = argmin
θ

∥∥∥∥I− ρ(k+1) < `(k+1),

[
n(θ)

1

]
>

∥∥∥∥2

`2(ΩHR)

+ν‖dAθ‖`1(ΩHR)+
κ

2

∥∥∥θ−(z,∇z)(k)+u(k)
∥∥∥2

`2(ΩHR)

z(k+1) = argmin
z

µ ‖z0 − Dz‖2`2(ΩLR) +
κ

2

∥∥∥θ(k+1) − (z,∇z) + u(k)
∥∥∥2

`2(ΩHR)
,

u(k+1) = u(k) + θ(k+1) − (z,∇z)(k+1)
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Qualitative Evaluation

Input depth

Input RGB

Depth estimate
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Qualitative Evaluation

Input RGB Albedo estimate

Depth image Depth estimate
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Motivation: Failure Case of the Previous Approach

When estimated albedo is highly undersegmented, albedo
information propagates to geometry:

Input RGB
Input
depth

Albedo
estimate

Depth estimate
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Beyond Regularization: Reflectance Learning

Replacing Potts regularization of reflectance by a deep learning
framework circumvents the difficulties of choosing an
appropriate regularizer, and simplifies numerics.

Input RGB
Input
depth

CNN-albedo
estimate

Depth estimate

[Haefner et al., “Photometric Depth Super-Resolution”,
PAMI 2019]
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Reflectance Learning: Idea

Learn a black-box mapping from image to albedo to get rid of
man-made Potts prior. Leave the rest (geometry and lighting
estimation) to the physics-based variational approach.

7→

RGB
image
(input)

Albedo
(output)

Advantage: Move from “piecewise constant albedo” assumption
to “same class of objects” assumption.
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Reflectance Learning: Database Creation

Rendering (with Blender) of ≈ 5000 faces with known
reflectance:

21 faces, each with 15
different expressions
three different viewpoints
multiple different lighting
conditions

Im
ag

e
A

lb
ed

o

Different viewpoints

Different lighting
conditions
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Reflectance Learning: Results

Image-albedo mapping learnt using a U-Net CNN on the
synthetic database. Testing on real-world images:

Image
Albedo

estimate
Image

Albedo
estimate
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Reflectance Learning: Back to Depth Super-resolution

The optimization framework gets simpler, as no optimization
over ρ = ρCNN is needed, so the Potts term λP2(ρ) disappears:

min
z:ΩHR→R
�����
ρ:ΩHR→R3

`∈R4

∥∥∥∥I− ρCNN < `,

[
n(z)

1

]
>

∥∥∥∥2

`2(ΩHR)

+ µ ‖z0 − Dz‖2`2(ΩLR)

+ νP1(z) +����λP2(ρ)

Take Away Message
Use variational methods if the physics-based model is
simple and realistic (here, for micro-geometry estimation)
If the phycis-based model is over-complicated or
unrealistic, prefer a black-box (here, for reflectance
estimation)
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Qualitative Results

Input RGB
Input
depth

CNN-albedo
estimate

Depth estimate
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Failure Case

RGB image is not a face⇒ Reflectance information is
propagated to geometry

Input RGB
Input
depth

CNN-albedo
estimate

Depth estimate

Possible remedies: larger training set, or multi-shot approach
i.e., photometric stereo.
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Multi-Shot Depth Super-Resolution using Photometric
Stereo

n RGB images
under varying

lighting

n depth
images

Albedo
estimate

Depth estimate

[Peng et al., “Depth super-resolution meets uncalibrated
photometric stereo”, ICCV 2017]
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Idea

Use uncalibrated photometric stereo instead of
shape-from-shading, i.e. go from a single image observation

I = ρ < `,

[
n(z)

1

]
>

to multiple image observations under varying lighting

Ii = ρ < `i ,

[
n(z)

1

]
>, i ∈ {1, . . . ,n}.

=⇒ Results in much more constrained ρ and z, due to their
independence on i ∈ {1, . . . ,n}. No regularization or learning is
thus needed:

min
z:ΩHR→R
ρ:ΩHR→R3

{`i}∈R4

n∑
i=1

∥∥∥∥Ii − ρ < `,
[
n(z)

1

]
>

∥∥∥∥2

`2(ΩHR)

+ µ ‖z0 − Dz‖2`2(ΩLR)

+����νP1(z) +����λP2(ρ)
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Qualitative Results

Input RGBs
Input
Depth

Albedo
Estimate

Depth Estimate
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What if There is no Depth Prior ?

In theory, the depth prior is not even needed:

Theorem – Brahimi et al. 2019 (Hal 02297643)

There is a unique (C2-depth,reflectance,lighting) solution of:

Ii = ρ < `i ,

[
n(z)

1

]
>, i ∈ {1, . . . ,n},

And the solution can be found in closed-form using a spectral
approach...

But, spectral approach very sensitive to noise: regularization +
non-convex optimization remains the best option.
State-of-the-art heuristic: ballooning initialization, then
multi-block ADMM: Haefner, Ye, et al. 2019 (ICCV 2019).
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Conclusion and Perspectives

Contributions:

1 A flexible splitting-based numerical framework for
photometric 3D-reconstruction

2 Application to depth super-resolution for RGBD sensors

Ongoing work:

Simultaneous 3D-reconstruction and (Chan-Vese-like)
2D-segmentation: Haefner, Quéau, and Cremers 2019
(3DV)
Extension to multi-view stereo: Mélou et al. 2019 (SSVM)

... Photometric 3D-reconstruction for Arts
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Ongoing Work on Cultural Heritage
Bayeux tapestry (represents the conquest of England by William):

High-resolution multi-illumination capture:
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Ongoing Work on Cultural Heritage
High-resolution 3D-scanning, for 3D-copies which could

be touched by visually-defficients:
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Ongoing Work on Optical Illusions

With one image: ill-posed problem
With many images: well-posed problem

⇒With two images: can we find a shape explaining any
two images under two different lighting?

Monet

Van Gogh Monet or Van Gogh ?
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Thank you for your attention !
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