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Shape-from-shading: A Classic lll-posed Problem

Given an image | : Q ¢ R?2 — R™, Shape-from-Shading (SfS)
consists in inverting the forward photometric model (image
irradiance equation)

I=R(z,p. %) (1)
with R a radiance function depending on the unknown
depth z : Q — R, surface reflectance p : Q — R™, and
incident lighting £ : Q — S2.

LN

RGB image: Sculptor’s Painter’s Gaffer’s
| ge: explanation: explanation: explanation:
, z P 0
g
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lllustration of SfS’s lll-posedness

Even with known surface reflectance p and incident lighting ¢,
shape estimation by SfS is an ill-posed inverse problem
(Horn, 1970).

Example: two solutions of | = R(z, p, £) with | := Lena, white
reflectance (p = 1) and frontal lighting (¢ = [0,0, —1]T):

2
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lllustration of SfS’s lll-posedness

Even with known surface reflectance p and incident lighting ¢,
shape estimation by SfS is an ill-posed inverse problem
(Horn, 1970).

Maximal viscosity solution Variational solution
A [Cristiani and Falcone 20071 [Quéauetal. 201717
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Parameterization the irradiance equation | = R(z, p, £)

Basic Lambertian model:

RGB image Albedo Shading
1:Q— RS p:Q— RS S(z,0): Q2 —=R

where albedo (Lambertian reflectance) = color, and shading =
lighting-geometry interaction.
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Parameterization the irradiance equation | = R(z, p, £)

Shading = lighting-geometry interaction:

Yo el

RGB image Albedo Lighting Normals
1:Q— RS p:Q— RS Lcs? n(z): Q — §?

where the surface normal n relates to the depth map zin a
nonlinear way:

n(z) = 1 [ fVz ]
I192P 4+ (-z— < p.vz >y 777 <PVZ>

. (f>0:length,andp:Q — RR?: centered pixel coordinates).

'
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Parameterization the irradiance equation | = R(z, p, £)
Extension to first-order spherical harmonics lighting £ € R*:

@ = a

Geometry
} (z):Q— R*

n

RGB image Albedo Lighting [
1

1:Q— RS p:Q— RS LcR*

I=R(z,p,L) = p{L, [n(12)]> ’

where the surface normal n relates to the depth map zin a
nonlinear way:

n(z) = 1 [ fVz ]
II2P + (cz= <p.vzsp 727 <PVZ>

s, (f>0:length, and p : Q — R?: centered pixel coordinates).

'
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Outline

Variational Solving of Shape-from-Shading
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Variational Solving of SfS Equation I = R(z, p, £)

Assume (for now) that p and £ are known. Problem reduces to
a nonlinear PDE | := R(Vz).

Horn and Brooks 1986: Regularization

Set (p, q) := Vz over Q C R?

1) Estimate gradient components satisfying integrability:
minp.q [fo (I — R(P, @))% + MN(dyp — 9xq)* dxdy
2) Integrate: min; [, [I(p, q) — Vz||* dxdy

(b, Q) is conservative by construction — Integrated
estimation of gradient and depth:

|—R dd
551;,“/< R(p. )" dxdy

s.t. ( =Vz

i /
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Regularized SfS Model

m Minimal surface regularization over Q
m (Incomplete) depth prior over Q' C Q

i A(I-R 2 1+ p? + g?dxd

g};g//ﬂ( (0;9))" +vy/1+p+ g°dxdy
2

+///u<z—z°> dxdy

p.,q) =Vz

s.t. (p,

v

By tuning A, 1 and v, we may achieve SfS, depth denoising and
inpainting, or shading-based depth refinement.

B
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Solving the Regularized SfS Model using ADMM

(P, gtk+1) solution of the local, nonlinear

least-squares problem: use parallel BFGS iterations

V1 +P%+ 2

2
w200 4 gk
+ 25 H(p, q)—Vz +0 -

. 2
iy AII/—R(P» Dle@) +v

Q)

2 2
0 ol A1) k1) (k)
gz(Q,)Jr 25 H(p ,q )—Vz+6

min zZ—Z
z K H 2(Q)

gt — gk) 4 (plkt1) gkt 1)y _ z(k+1)

g
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Application 1: Depth Refinement for MVS Techniques

Input depth
map 72

Input images /' and /2 Estimated
lighting

Shading-based refinement

2
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Application 2: SfS under Natural lllumination

\
Input RGB Calibrated SfS 3D-reconstruction
image lighting
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Application 3: Depth Refinement for RGB-D Sensors

Denoi (minimal surf
Input depth enoised ( al surface)

Input RGB Estimated @
image lighting <

Shading-based refinement

5
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Outline

Photometric Depth Super-Resolution for RGBD Sensors
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Problem with RGB-D Sensors

Depth

image Shape RGB image
Depth image has RGB image has
B noise and quantization, m less noise and quantization,
B missing areas, B No missing area,
m coarse resolution. m high resolution.

1."
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Problem with RGB-D Sensors

Depth High-resolution

image Shape RGB image shape
Depth image has RGB image has
B noise and quantization, m less noise and quantization,
B missing areas, B No missing area,
m coarse resolution. m high resolution.

e Combine data to get high-resolution shape I
" Y
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lll-posedness in Depth Super-Resolution

Given a low-resolution depth map zy : Q,5 — R, Depth
Super-Resolution (SR) consists in inverting the forward

li del
downsampling mode 2= Dz
with z : Qyr — R the (unknown) high-resolution depth, and D a
(rank-deficient) downsampling operator

m Peng et al. 2017 (ICCV)
Genuine surface (black line) m Haefner, Quéau, et al. 2018
can be approximated in co (CVPR)
many ways (dashed lines)
given sparse obervations
(rectangles) )

m Haefner, Peng, et al. 2019
(PAMI)
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Variational Formulation

2
, n(z 2
~min Hl—p<£, [ (1 )] > +MHZo—DzH€2(QLR)
z:Qur—R ZZ(QHR)
p:QHR—>R3

tert  +vPi(2) + APa(p)
P is a minimal surface regularization term:

Pi(2) = IdA2) s, um)

z 2
?\/|sz| +(—z—<p,Vz>)?

£1(QHR)
P is a Potts regularization term (nondifferentiable and

nonconvex),

0, if [Vp(p)lr=0,
P2(p) = IVl pm) = Z {1 otherwise
PEQHR ’ '

B
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Numerical Resolution - Splitting Strategy

Normal n and minimal surface term dA depend on z and Vz:

1 fVz
n(z) :=n(z,Vz) = [_ _ }
\/\sz|2 +(—z—<p,Vz>)? Z-<p.Vz>

dA(2) = dA(z,VZ) = é\/\sz\z t(—z— <p,Vz>)

Introduce splitting 6 := (z, Vz) to make optimization tractable:

n(o) 2 2
~min l—p<, [ ] } > +pllz0 - DZ||£2(QLH)
z:Qur—R £o(QR)
p:QHRA)R

cert FV[AAO) g ) T ANVPlg @)

HZQHH—)RS

st. 6=(2,V2)
g
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Numerical Resolution - Multi-block ADMM

Given (p) 2(k) (k)| z(k)y at iteration k, we update:

(k) 2
p 1) = argmin |[1 - p < £, {"(91 )] > + Vol oum
p (Qur)
B 2
26+ = argmin |1 — pk+1) < ¢, [n(e( ))] >
¢ 1 2(QR)
p 2
9k+1) — argmin ||l — pk+1) < plk+1), [n( )} S
0 KZ(QHR)
(k) (k)
+010A0 g+ 5 |0~ (2920 O+
2
(k+1) _ - a2 (k+1) (k)
z argzmm 11zo = Dzlzq, ) + > HO —(z,Vz)+u 2@

" ) — ) o glktl) (7 g z)(k+1)
o
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Qualitative Evaluation

Depth estimate

Input RGB

2
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Qualitative Evaluation

Albedo
estimate

Depth estimate
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Qualitative Evaluation

Input Albedo
depth estimate

Input RGB Depth estimate
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Qualitative Evaluation

4
Albedo estimate

Depth image Depth estimate
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Outline

Combinging Variational Methods with Deep Learning
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Motivation: Failure Case of the Previous Approach

When estimated albedo is highly undersegmented, albedo
information propagates to geometry:

Input Albedo
depth estimate

Input RGB Depth estimate

1."
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Beyond Regularization: Reflectance Learning

Replacing Potts regularization of reflectance by a deep learning
framework circumvents the difficulties of choosing an
appropriate regularizer, and simplifies numerics.

Input CNN-albedo
depth estimate

Input RGB Depth estimate

[Haefner et al., “Photometric Depth Super-Resolution”,
et PAMI 2019]
“Yee
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Reflectance Learning: Idea

Learn a black-box mapping from image to albedo to get rid of
man-made Potts prior. Leave the rest (geometry and lighting
estimation) to the physics-based variational approach.

ir?wS;e Albedo
(input) (output)

Advantage: Move from “piecewise constant albedo” assumption

a5, to “same class of objects” assumption.
hl
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Reflectance Learning: Database Creation

Rendering (with Blender) of ~ 5000 faces with known
reflectance:

m 21 faces, each with 15
different expressions
m three different viewpoints

m multiple different lighting
conditions

Different lighting
conditions

¥, . . .
g Y Different viewpoints
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Reflectance Learning: Results

Image-albedo mapping learnt using a U-Net CNN on the
synthetic database. Testing on real-world images:

Image Albedo
at g estimate estimate

)
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Reflectance Learning: Back to Depth Super-resolution

The optimization framework gets simpler, as no optimization
over p = pcnn IS needed, so the Potts term APs(p) disappears:

n(2)] _|f°
min Hl—pCNN <£,|: 1 ]>

z:Qur—R
p:

2o b (2) 4 AP

Take Away Message

m Use variational methods if the physics-based model is
simple and realistic (here, for micro-geometry estimation)

m If the phycis-based model is over-complicated or
unrealistic, prefer a black-box (here, for reflectance
estimation)

2
+ 1% ||ZO - DZHKZ(QLH)

£2(QHR)

Y
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Qualitative Results

Input CNN-albedo
depth estimate

Input RGB Depth estimate

1."
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Qualitative Results

Input CNN-albedo
depth estimate

Input RGB Depth estimate
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Qualitative Results

Input CNN-albedo
depth estimate

Input RGB Depth estimate

2
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Failure Case

RGB image is not a face = Reflectance information is
propagated to geometry

.
L)
Zic

Vi~ Y%

.
Ny e, ~

v
ey
\

7

o

Input CNN-albedo
depth estimate

Input RGB Depth estimate

Possible remedies: larger training set, or multi-shot approach
ary i.e., photometric stereo.
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Outline

Uncalibrated Photometric Stereo
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Multi-Shot Depth Super-Resolution using Photometric
Stereo

n RGB images

under varying pdepth Alt_)edo Depth estimate
o images estimate
lighting

[Peng et al., “Depth super-resolution meets uncalibrated

photometric stereo”, ICCV 2017]
Y
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Idea

Use uncalibrated photometric stereo instead of
shape-from-shading, i.e. go from a single image observation

l=p< ¥, [n&z)] >

to multiple image observations under varying lighting

V:p<eﬁrfq>, ief{1,....n.

= Results in much more constrained p and z, due to their

independence on i € {1,...,n}. No regularization or learning is

thus needed:
n

2
min g I'—p <, n(z) >
Z:QHR—HR " 1 Y, (Q )
p:Qpp—R3 i=1 2(32HR

{erert  +vPHZ) + APxAp)
s ¥,
Y

2
+ H ”ZO - DZHZg(QLg)
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Qualitative Results

Input Albedo
Depth Estimate

Input RGBs Depth Estimate

¥,
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Qualitative Results

N

CANADA

Input Albedo
Depth Estimate

Input RGBs

Depth Estimate

1;?‘
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Qualitative Results

Input Albedo
Depth Estimate

Input RGBs Depth Estimate
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Qualitative Results

.

Input Albedo
Depth Estimate

Input RGBs Depth Estimate
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Qualitative Results

Input Albedo
Depth Estimate

Input RGBs Depth Estimate
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What if There is no Depth Prior ?

In theory, the depth prior is not even needed:

There is a unique (C?-depth,reflectance,lighting) solution of:

I"=p<£’,[n(12)] > ie{l,....n},

And the solution can be found in closed-form using a spectral
approach...

But, spectral approach very sensitive to noise: regularization +
non-convex optimization remains the best option.
State-of-the-art heuristic: ballooning initialization, then
multi-block ADMM: Haefner, Ye, et al. 2019 (ICCV 2019).

L P
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GREYC vyvain QuEau Variational methods for photometric 3D-reconstruction 34/38



Conclusion and Perspectives

Contributions:

A flexible splitting-based numerical framework for
photometric 3D-reconstruction

Application to depth super-resolution for RGBD sensors

Ongoing work:

m Simultaneous 3D-reconstruction and (Chan-Vese-like)
2D-segmentation: Haefner, Quéau, and Cremers 2019
(3DV)

m Extension to multi-view stereo: Mélou et al. 2019 (SSVM)

m ... Photometric 3D-reconstruction for Arts

B
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Ongoing Work on Cultural Heritage

Bayeux tapestry (represents the conquest of England by William):

it fm.;‘;}:édn:m&m 3/ f;a\l! !H
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Ongoing Work on Cultural Heritage

High-resolution 3D-scanning, for 3D-copies which could

be touched by visually-defficients:
o Ulnibiroup

#

Estimated reflectance (illumination-free)

7 3D-reconstruction (printable)

Colored 3D-reconstruction
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Ongoing Work on Optical lllusions

m With one image: ill-posed problem
m With many images: well-posed problem

m = With two images: can we find a shape explaining any
two images under two different lighting?

afy Van Gogh Monet or Van Gogh ?
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Thank you for your attention !
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