From processing to learning on graphs
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Signals on graphs

» Natural graph: mesh, network, etc., » Instrumental graph: derived from a
related to a “real” structure, various collection or a signal, captures its
signals can live on it structure, other signals leverage it
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Playing with graph signals

Coding

Processing

Learning

Compress

Transform

Cluster

Sample

Enhance
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Reconstruct

Edit

Infer
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Playing with graph signals

Coding Compress Sample Reconstruct
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Garrido 2016
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Undirected weighted graph

G ={V,E, W}
V=1(1,n)
EeVXxV

W = [w;;] € R2*™ " sym.

+
wij>0 <— (4,7) € &




Graph Laplacian(s)
Vertex degree and degree matrix

n
di = ) w;j, D=diag(d; - - dn)
j=1

Symmetric p.s.d. Laplacians
» Combinatorial Laplacian

L=D-—-W
» Normalized Laplacian

Lnorm = Id — D~ 1/2wp—1/2

11 =0
LhormD/21 =0
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Graph signal and smoothness

Signals / functions on graph

» Scalar x ¢ R", i f(i) = z;

» Multi-dim. X=[z1 - Tm] eR™™, i f(i) = ()11
Graph smoothness

» Scalar

1 > T
5 Zwij(a:f,; — .’L‘j) =z Lx
1,]
» Multi-dimensional

oS will £G) ~ £GP = trace(X LX)
1,3
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Spectral graph analysis

Laplacian diagonalization and graph harmonics of increasing “frequencies”

A1 =0 < Ao < Ay < 2max{d;}

| — U/\U_r AN = diag(A1---An)
U= [uq---un] orthogonal

u;gr L’Ll,g — )\g

Graph Fourier transform and its inverse

7 =U"gx r = Uz

Smooth (k-bandlimited) signals
x € span(Uy), U = [ug - uy]
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Spectral graph analysis
U (Fiedler)
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Spectral vertex embedding

Rows of truncated Fourier basis

bi=UT5i€Rk,i=1-~n I

= k-dim embedding of vertices

¥

Clustered with k-means in spectral clustering
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Linear filters and convolutions

Filtering in the spectral domain

» With filter Fourier transform » Through frequency filtering

FLER”’ §R+—>R+

h +x = Udiag(h)U 'z g(z) = Ug(MU "z

Polynomial filtering: from spectral to vertex domain
» Controlled locality and complexity

d
g(\) = Z ar\”
r=1

g(z) = Ug(MU'" = Z arl"x

SIES

 locality on graph
e computational complexity
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Sampling graph signals

Random sampling p < [0,1]" ||Ipll1 =1
Defi . o .

» Define Yertex sampling distribution wj ~p, j = 1...m

» Draw signal samples accordingly

y =Mz = (zw,)i=1

Problems

» Reconstruction of smooth signals
» Performance as function of m

» Best sampling distribution

[Puy et al. 2016]
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https://arxiv.org/pdf/1511.05118.pdf

Reconstructing smooth signals from samples

Smooth interpolation / approximation (noisy measures)

argminz 'Lz sb.t. Mz = Y
FASINE

argmin |ly — Mz||? + vz 'Lz
zcR"

k-bandlimited approximation: exact or approximate

argmin |ly — Mz||*
zespan(Uk)

s [Puy et al. 2016]

argmin ||y — Mz||? +~z'§(L)z

zcR"
with g a highpass polynom.filter
g hon-decreasing
g(Ar) small, g(Agp41) >0
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https://arxiv.org/pdf/1511.05118.pdf

Reconstruction quality (1)
z* € argmin HP_l/Q(y — I\/I,z)H2

zespan(Uy) P = diag(pw,)

Assuming RIP*
» Noisy measurements: Yy — Mx + n

Given e, 6 € (0, 1), with proba. at least 1 — ¢,

Va € span(Ug), n:

2
I+~ al < [p3/2n|
Jm(1 - 6)

» Noiseless measurements: exact recovery
*m large enough, for now technicolor
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Reconstruction quality (2)

z* = arg min HP_l/Q(y —M2)|I3 +vz'§(L)=

zcRM

Assuming RIP*
Given e, € (0, 1), with proba. at least 1 — &,
Va € span(Ug), n:

1
\/m(l —0)
|Uj Upz* — 2% < C|P~/?n| + D=

JUTUpz* — x| < (A|P~Y2n| + Bz|) .

*m large enough, for now

tec



Optimizing sampling

Some vertices are more important
» Norm of spectral embedding: max. energy fraction on vertex from k-bandlimited signal

T Tyls.
HUT&H neRk [0

;]| = (UL ;]| =

|b;|| = 1 Exists a k-bandlimited signal concentrated on this node; should be sampled
|b;]| = O Exists no k-bandlimited signal concentrated on this node; can be ignored
» Graph weighted coherence of distribution

V’gz max{ _1/2||bz\|} > Vk

Isisn

should be as small as possible
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Restricted Isometry Property (RIP)

Given e,6 € (0,1), with proba. at least 1 — &,

for all 1, x> € span(Uy) if

1 ._ 2
(1= 8)|j@y — 2] < %HP VM (@1 — 22)||” < (1 +0)[ley — o

> (1/5)2 In(k) vertices are enough to sample all k-bandlimited signals
» In bestcase, k In(k) suffice
» Once selected, vertices can be used to sample all k-bandlimited signals
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Empirical RIP

Community graphs

e 9
P ®

L

Empirical probability that the RIP holds vs. m.

Uniform sampling Optimal sampling

| &

technicolor
L "

FEEL THE WONDER




Optimal and practical sampling

Optimal sampling distribution
x .=l T 5112 k __
p; =k H|Uy 6,1 = v = VE
» kIn(k) measurements suffice, but requires computation of harmonics

Efficient approximation

» Rapid computation of alternative vertex embedding of similar norms
T T
b, =R . ,0;

with columns of R obtained by polynomial filtering of suitable Gaussian signals
» Can serve also for efficient spectral clustering [Tremblay et al. 2016]

technicolor
.
FE

EL THE WONDER



Optimal and practical sampling

Community graph Cs - Minnesota graph - £ = 100 Bunny graph - k = 100

Optimal sampling

—
=5
=
—_
-
=
pan
=
=
-
o
o
-
o)
—
-
-
=
=
-
2
7
3
—_

technicolor

=D

FEEL THE WONDER




23

Extension to group sampling [Puy and Pérez 2017]

N under submission
Given a suitable partition of vertices V = Up__1Vy

» Smooth graph signals almost piece-wise constant on groups

Random sampling?
Reconstruction?

EER

» Speed and memory gains (working on reduced signal versions)
» Interactive systems: propose sampled groups for user to annotate
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Ol

FEEL THE WONDER



24

Extension to group sampling [Puy and Pérez 2017]

N under submission
Given a suitable partition of vertices V = Up__1Vy

» Smooth graph signals almost piece-wise constant on groups

Random sampling?
Reconstruction?

EER

» Speed and memory gains (working on reduced signal versions)
» Interactive systems: propose sampled groups for user to annotate
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Group sampling and group coherence

Reasoning at group level

» Group sampling » Local group coherence: max energy fraction
N in group from a k-bandlimited signal*
P c [071] ) Hp”1=1 14
IN"Ugm|

Wi~p, j=1--s max = [IN‘U,||2

y (o) nerk ||n|
Y 1/1€Vw;,j =15 » Group coherence:

S
m = Ve, E— max {p, Y2INUL|Io) > 1
j;l wjl vp = max {p; " “INUgll2f
* / .
N( ):B — ('CC?:)’Z:EVg
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Restricted Isometry Property (RIP) P = diag(pw;ldpy,, )

Given e, € (0, 1), with proba. atleast 1 — ¢

1. 2
(1 =)y — x| < Z[PTH2M(@1 —22)|” < (1 + 0|21 — 22?

forall x1,x, € span(Uy;) if

3

S > 52(V £Y2 |n (2k)

g

> (1/5)2 In(k) groups are enough to sample all k-bandlimited signals
» Inbest case, IN(k) groups suffice
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Smooth piece-wise constant reconstruction

ZeRN

z* = argmin ||P~ 2Ry — M2)||3 + vz "5(D)z

L - ]:EP” XN

1)
—_
]

& p—

|
o~
-y
|
=
e
v

Averaging
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Smooth piece-wise constant reconstruction

z* = argmin ||P~Y2(Ay — M2) |3 + vz "5(D)z
ZeRN

Assuming RIP

Given e,6 € (0, 1), with proba. atleast 1 — ¢
1

Vs(1—9)
|UgUpz* — %[ < C|P~12n| + DA + ¢) ||

|Ug Uz — || < (AP0 4+ (B + cE)||)

vz € span(Uy) and ||AT Az — x| < ¢z
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Empirical RIP
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Group sampling distributions

. . Sy o . . : . technicolor
FIG. 4. Example of sampling distributions. Top panels: p* (left), p (middle), and g (right) for the Minnesota graph at k = 10. .

Bottom panels: p* (left), p (middle), and g (right) for the bunny graph at k = 25. FEEL THE WONDER
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Convolutional Neural Nets (CNNs) on graph
CNNs

» Immensely successful for image-related task (recognition, prediction, processing, editing)
» Layers: Convolutions, non-linearities and pooling

Extension to graph signals?
» No natural convolution and pooling

» Graph structure may vary (not only size as with lattices)
» Computational complexity

» A simple proposal [Puy et al. 2017]
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Graph-CNNs

Convolution in spectral domain [Bruna et al. 2013]
» Computation and use of Fourier basis not scalable
» Difficult handling of graph changes across inputs

Convolution with polynomial filters [Defferrard et al. 2016, Kipf et al. 2016]
» Better control of complexity and locality

» Not clear handling of graph changes across inputs

» Lack of filter diversity (e.g., rotation invariance on 2D lattice)

Direct convolutions [Monti et al. 2016, Niepert et al. 2016, Puy et al. 2017]
» Local or global pseudo-coordinates
» Include convolution on regular grid as special case
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[Puy et al. 2017]

Direct convolution on weighted graph

At each vertex

» Extract a fixed-size signal “patch” » Dot product with filter kernel
Order, n d
oc:Vx(1,d)—YV .’BER,hEIE_@l;
o(z,.)orders {; € V:j~1} xxh(i) =h q(i,x)
Weigh,
qg: R‘j_ x (1,d) = Ry

Assemble

g:VxR"— RY

(i,2) = (9(ws, Oy (i),

EEEEEEEEEEEEE


https://arxiv.org/pdf/1702.07759.pdf

Direct convolution on weighted graph

Back to classic convolution Weight-based ordering and weighting
» Lexicographical order, no weighting

1Q
2 3lg 4
O -@- O
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Non-local weighted pixel graph

Feature-based nearest neighbor graph
» Given an image, one feature vector at each pixel

» Connect each pixel to its d nearest neighbor in feature space
» Weigh with exponential of feature similarity
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One graph convolutional layer

£(S, Xnxmg) = (ReLU( % x;  hf + by)

P> )izt




Style transfer

Neural example-based stylization [Gatys et al. 2015]
» Iterative modification of noise to fit “statistics” of style image and “content” of target image

» Neural statistics: Gram matrix of feature maps at a layer of a pre-trained deep CNN
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Style transfer

Using only a single random graph convolution layer
» Input image only used to build the graph

n = 256 x 256,d = 25
mo = 3, m; = 50
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n = 256 x 256, d = 25

Style transfer mo = 3, mq = 50

Using only a single random graph convolution layer
» Input image only used to build the graph

technicolor

Non-local graph only —
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n = 256 x 256, d = 25

Style transfer mo = 3, mq = 50

Using only a single random graph convolution layer
» Input image only used to build the graph

technicolor

Non-local graph + Local graph —
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n=64,d =10

Color palette transfer mo = 2, m1 = 100

Using only a single random graph convolution layer
target image proposed optimal transport source palette
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Signal denoising

Trained 3-layer graph CNN
» Local and non-local graphs from noisy input

— ﬂ
, loc. weighted graph local or not loc. weighted graph
"~ soft thresholding no non-linearity no non-linearity

1 20 20 1
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Image denoising

200 400 o600 800

45

nan local 214 layer

T
.
I
I
I |

Ve Yt i e N o R o
1
1

1000 1200

Nb. iterations/10

Noisy 23.10dB
Trained — Local 29.13dB
Trained — Non-local | 29.42dB
Haar soft thresh. 26.78dB
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Triangular 3D mesh

Graph

» \ertices: points in 3D space

» Edges: forming triangulated graph

» Weights (if any): associated to local 3D shape

Signals

» Colors

» Normals

» Mesh deformations
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Face capture from single video

[Garrido et al.,2016]

Detailed 3D face rig
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http://gvv.mpi-inf.mpg.de/projects/PersonalizedFaceRig/index.html

Parametric face model

Two-level coarse linear modelling

» Inter-individual variations: linear space around average neutral face (AAM)
» EXxpressions: linear space of main modes of deformations around neutral (blendshapes)

Reconstruction and tracking from raw measurements
» Extract person’s neutral shape (morphology)

» Extract/track main deformations (expression/performance)
» Mitigate model limitations through smooth corrections

» Recover person-specific fine scale details
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Parametric face model

Two-level coarse linear modelling

» Inter-individual variations: linear space around average neutral face (AAM)
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Parametric face model

Two-level coarse linear modelling

» Inter-individual variations: linear space around average neutral face (AAM)
» EXxpressions: linear space of main modes of deformations around neutral (blendshapes)

Reconstruction and tracking from raw measurements
» Extract person’s neutral shape (morphology)

» Extract/track main deformations (expression/performance)
» Mitigate model limitations through smooth corrections

» Recover person-specific fine scale details
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Parametric face model

Two-level coarse linear modelling

» Inter-individual variations: linear space around average neutral face (AAM)
» EXxpressions: linear space of main modes of deformations around neutral (blendshapes)

Reconstruction and tracking from raw measurements
» Extract person’s neutral shape (morphology)

» Extract/track main deformations (expression/performance)
» Mitigate model limitations through smooth corrections

» Recover person-specific fine scale details
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[Garrido et al. 2016]

Smooth correction

Layered mesh model

m =mqg+Aa+ B3+ Cn+d e R3"

| O —

Graph harmonics on each coordinate [Vallet and Levy 2008][Li et al. 2013]

-Uknx
CTI — Ukny
_Uknz

technicolor


http://gvv.mpi-inf.mpg.de/projects/PersonalizedFaceRig/index.html

Model personalization and tracking in single video

\' ’ Multi-layer performance capture
—

Generic face prior

Monocular video
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Multi-layer performance capture

Coarse-scale Medium-scale Fine-scale
identity and expression corrective shapes detalil layer
blendshape
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From capture to animation

)
—

Generic face prior

Personalized face rig

Multi-layer performance capture

Coarse

9sJ4e0D)

Detail learning
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Personalized face rig

Turn model into a face rig (puppet)

m=’mo-|-Aa—|—B,8-|—Cn—|—d€R3”
too00
| \_/

» Ridge regression ,;3" p— R240><75/6

tec



Personalized face rig

Turn model into a face rig (puppet)
regression

fixed editable
m = mg + Aal+ BB+ dyl+[d] € R*"
AEKL
| \_/

» Ridge regression ,;3" p— R240><75/6

tec



Rig animation from capture
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Rig animation from capture
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From processing to learning on graphs
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Maths and Images in Paris
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» G. Puy, P. Pérez. Structured sampling and fast reconstruction of smooth graph signals. Submitted to
Information and Inference

» G. Puy, S. Kitic, P. Pérez. Unifying local and non-local signal processing with graph CNNSs.
arXiv:1702.07759

» P. Garrido, M. Zollhoefer, D. Casas, L. Valgaerts, K. Varanasi, P. Pérez, Ch. Theobalt. Reconstruction of
personalized 3D face rigs from monocular video. ACM Trans. on Graghics, 35(3), 2016
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