Compressed sensing off-the-grid:
The Fisher metric, support stability and optimal sampling bounds

Clarice Poon
University of Bath

Joint work with:

Nicolas Keriven and Gabriel Peyré
École Normale Supérieure

February 6, 2019
Outline

1. Compressed sensing off-the-grid
2. The Fisher metric and the minimum separation condition
3. Support stability for the subsampled problem
4. Ideas behind the proofs – Dual certificates
5. Removal of random signs assumption
Compressed sensing [Candès, Romberg & Tao ’06; Donoho ’06]

Task: Recover $a \in \mathbb{C}^N$ from $y = \Phi a$ where $\Phi \in \mathbb{C}^{m \times N}$ with $m \ll N$ and a is s-sparse.

Typical compressed sensing statement:

For certain random matrices $\Phi \in \mathbb{C}^{m \times N}$, with high probability, a can be uniquely recovered from $m = \mathcal{O}(s \log(N))$ measurements by solving

$$\min_{z \in \mathbb{C}^N} \|z\|_1 \text{ subject to } \Phi z = y$$

or in the noisy case of $y = \Phi a + w$, the minimizer \hat{a} of

$$\min_{z \in \mathbb{C}^N} \lambda \|z\|_1 + \frac{1}{2} \|\Phi z - y\|_2^2$$

with $\lambda \sim \delta/\sqrt{s}$ and $\|w\| \leq \delta$ satisfies $\|a - \hat{a}\|_1 \lesssim \sigma_s(x)_1 + \sqrt{s} \delta$.
Compressed sensing \cite{Candes06, Donoho06}

Task: Recover \(a \in \mathbb{C}^N \) from \(y = \Phi a \) where \(\Phi \in \mathbb{C}^{m \times N} \) with \(m \ll N \) and \(a \) is \(s \)-sparse.

Typical compressed sensing statement:

For certain random matrices \(\Phi \in \mathbb{C}^{m \times N} \), with high probability, \(a \) can be uniquely recovered from \(m = \mathcal{O}(s \log(N)) \) measurements by solving

\[
\min_{z \in \mathbb{C}^N} \|z\|_1 \quad \text{subject to } \Phi z = y
\]

or in the noisy case of \(y = \Phi a + w \), the minimizer \(\hat{a} \) of

\[
\min_{z \in \mathbb{C}^N} \lambda \|z\|_1 + \frac{1}{2} \|\Phi z - y\|_2^2
\]

with \(\lambda \sim \delta/\sqrt{s} \) and \(\|w\| \leq \delta \) satisfies \(\|a - \hat{a}\|_1 \leq \sigma_s(x)_1 + \sqrt{s}\delta. \)

In the case where \(U \) is unitary, the above statement holds with \(\Phi = P_{\Omega} U \) where \(\Omega \) are \(m = \mathcal{O}(N \cdot \mu(U)^2 \cdot s \cdot \log(N)) \) uniformly drawn indices, \(\mu(U) = \max_{i,j} |U_{ij}| \) is the so called coherence.

In the case of \(U \) being the DFT, we have \(\mu(U)^2 = 1/N. \)
Compressed sensing off the grid

Aim: Recover $\mu_0 \in \mathcal{M}(\mathcal{X})$, $\mathcal{X} \subseteq \mathbb{R}^d$, from m observations, $y = \Phi \mu_0 + w$

- Let (Ω, Λ) be a probability space. For $\omega \in \Omega$, we have random features $\varphi_\omega \in \mathcal{C}(\mathcal{X})$.

- For $k = 1, \ldots, m$, let $\omega_k \overset{iid}{\sim} \Lambda$. The measurement operator is

$$
\Phi : \mathcal{M}(\mathcal{X}) \to \mathbb{C}^m, \quad \Phi \mu \overset{\text{def.}}{=} \frac{1}{\sqrt{m}} \left(\int \varphi_{\omega_k}(x) d\mu(x) \right)_{k=1}^m
$$

Typically, the measure of interest is $\mu_0 = \sum_{j=1}^s a_j \delta_{x_j}$ where $a \delta_x$ denotes the Dirac at $x \in \mathcal{X}$ with amplitude $a \in \mathbb{C}$ (also called a “spike”).
Imaging

Sampling the Fourier transform (e.g. astronomy)

Recover $\mu \in \mathcal{M}(\mathbb{T}^d)$ from $(\mathcal{F}\mu(\omega_k))_{k=1}^m$ where \mathcal{F} is the Fourier transform and ω_k are drawn iid from $([-f_c, f_c]^d, \text{Unif})$.

Here, $\varphi_\omega(x) = \exp(-i2\pi x^\top \omega)$ and

$$\Phi\mu_0 = \frac{1}{\sqrt{m}} \left(\sum_{j=1}^{s} a_j \exp(-i2\pi x_j^\top \omega_k) \right)_{k=1}^m$$

Sampling the Laplace transform (e.g. fluorescence microscopy)

Recover $\mu \in \mathcal{M}(\mathbb{R}_+^d)$ from $(\mathcal{L}\mu(\omega_k))_{k=1}^m$ where \mathcal{L} is the Laplace transform and ω_k are drawn iid from $(\mathbb{R}_+^d, \Lambda_{\alpha})$ where $\Lambda_{\alpha}(\omega) \propto \exp(-2\alpha^\top \omega)$.

Here, $\varphi_\omega(x) = \exp(-x^\top \omega)$ and

$$\Phi\mu_0 = \frac{1}{\sqrt{m}} \left(\sum_{j=1}^{s} a_j \exp(-x_j^\top \omega_k) \right)_{k=1}^m$$
Let $\Omega \subseteq \mathbb{R}^d$, and $\omega_1, \ldots, \omega_m$ are the training samples drawn from (Ω, Λ), with corresponding values $y_1, \ldots, y_m \in \mathbb{R}$. Find a function of the form

$$f(\omega) = \sum_{j=1}^{s} a_j \max (\langle x_j, \omega \rangle, 0)$$

where $a_j \in \mathbb{R}$ and $x_j \in \mathbb{R}^d$ such that $f(\omega_j) \approx y_j$ for $j = 1, \ldots, m$. We can then use the function f to predict y given $\omega \in \Omega$.

Two layer neural network [Bach, 2015]
Two layer neural network [Bach, 2015]

Let $\Omega \subseteq \mathbb{R}^d$, and $\omega_1, \ldots, \omega_m$ are the training samples drawn from (Ω, Λ), with corresponding values $y_1, \ldots, y_m \in \mathbb{R}$. Find a function of the form

$$f(\omega) = \sum_{j=1}^{s} a_j \max (\langle x_j, \omega \rangle, 0)$$

where $a_j \in \mathbb{R}$ and $x_j \in \mathbb{R}^d$ such that $f(\omega_j) \approx y_j$ for $j = 1, \ldots, m$. We can then use the function f to predict y given $\omega \in \Omega$.

This is precisely our sparse spikes problem where we let $\varphi_\omega(x) = \max (\langle x, \omega \rangle, 0)$ and

$$\Phi \mu_0 = \left(\sum_{j=1}^{s} a_j \max (\langle x_j, \omega_k \rangle, 0) \right)_{k=1}^{m}$$

where $\mu_0 = \sum_{j=1}^{s} a_j \delta_{x_j}$.
Density estimation

Task: Given data on \mathcal{T}, estimate parameters $(a_i) \in \mathbb{R}^N_+$ and $(x_i)_{i=1}^s \in \mathcal{X}^s$ of a mixture

$$\xi(t) = \sum_{j=1}^s a_j \xi_{x_j}(t) = \int_{\mathcal{X}} \xi_x(t) d\mu_0(x)$$

where $\mu_0 = \sum_j a_j \delta_{x_j}$ where $(\xi_x)_{x \in \mathcal{X}}$ is a family of template distributions. E.g. $x = (m, \sigma) \in \mathcal{X} = \mathbb{R} \times \mathbb{R}_+$ and $\xi_x = \mathcal{N}(m, \sigma^2)$.
Density estimation

Task: Given data on \mathcal{T}, estimate parameters $(a_i) \in \mathbb{R}_+^N$ and $(x_i)_{i=1}^s \in \mathcal{X}^s$ of a mixture

$$\xi(t) = \sum_{j=1}^s a_j \xi_{x_j}(t) = \int \xi_x(t) d\mu_0(x)$$

where $\mu_0 = \sum_j a_j \delta_{x_j}$ where $(\xi_x)_x \in \mathcal{X}$ is a family of template distributions. E.g. $x = (m, \sigma) \in \mathcal{X} = \mathbb{R} \times \mathbb{R}_+$ and $\xi_x = \mathcal{N}(m, \sigma^2)$.

Sketching [Gribonval, Blanchard, Keriven & Traonmilin, 2017]

- No direct access to ξ but n iid samples $(t_1, \ldots, t_n) \in \mathcal{T}^n$ drawn from ξ.
- You do not record this (possibly huge) set of data, but compute online a small set $y \in \mathbb{C}^m$ of m sketches against sketching functions $\theta_\omega(t)$:

 $$y_k \overset{\text{def.}}{=} \frac{1}{n} \sum_{j=1}^n \theta_\omega_k(t_j) \approx \int \theta_\omega_k(t) \xi(t) dt = \int \int \theta_\omega_k(t) \xi_x(t) dt d\mu_0(x).$$

- So, $\varphi_\omega(x) \overset{\text{def.}}{=} \int \theta_\omega_k(t) \xi_x(t) dt$. E.g. $\theta_\omega(t) = e^{i\langle \omega, t \rangle}$ and $\varphi(x)$ is the characteristic function of ξ_x.
The Beurling LASSO

The BLASSO was initially proposed by [De Castro & Gamboa, 2012] and [Bredies & Pikkarainen, 2013]. Solve

\[
\min_{\mu \in \mathcal{M}(\mathcal{X})} \frac{1}{2} \| \Phi \mu - y \|^2 + \lambda \| \mu \| (\mathcal{X}) \quad (\hat{P}_\lambda(y))
\]

where \(\| \mu \| (\mathcal{X}) \) \(\overset{\text{def.}}{=} \sup \{ \operatorname{Re}(\langle f, \mu \rangle) ; f \in \mathcal{C}(\mathcal{X}), \| f \|_{\infty} \leq 1 \} \).

Noiseless problem: for \(y_0 = \Phi \mu_0 \),

\[
\min_{\mu \in \mathcal{M}(\mathcal{X})} \| \mu \| (\mathcal{X}) \text{ subject to } \Phi \mu = y_0 \quad (\hat{P}_0(y_0))
\]

NB: If \(\mu = \sum_j a_j \delta_{x_j} \), then \(\| \mu \| (\mathcal{X}) = \| a \|_1 \).
The Beurling LASSO

The BLASSO was initially proposed by [De Castro & Gamboa, 2012] and [Bredies & Pikkarainen, 2013]. Solve

$$\min_{\mu \in \mathcal{M}} \left\{ \frac{1}{2} \| \Phi \mu - y \|^2 + \lambda |\mu| (\mathcal{X}) \right\}$$

(\hat{P}_\lambda(y))

where $|\mu| (\mathcal{X}) \overset{\text{def.}}{=} \sup \{ \text{Re} (\langle f, \mu \rangle) ; f \in \mathcal{C}(\mathcal{X}), \| f \|_\infty \leq 1 \}$.

Noiseless problem: for $y_0 = \Phi \mu_0$,

$$\min_{\mu \in \mathcal{M}(\mathcal{X})} | \mu | (\mathcal{X}) \text{ subject to } \Phi \mu = y_0$$

(\hat{P}_0(y_0))

NB: If $\mu = \sum_j a_j \delta_{x_j}$, then $|\mu| (\mathcal{X}) = \| a \|_1$.

Goal: A CS-type theory.
Under what conditions can we recover $\mu_0 = \sum_{j=1}^s a_j \delta_{x_j}$ exactly (stably) from

$$m = \mathcal{O}(s \times \log \text{ factors})$$
(noisy) randomised linear measurements?
Remarks

- Other approaches include **Prony-type methods** (1795): MUSIC [Schmidt, 1986], ESPRIT [Roy, 1987], Finite Rate of Innovation [Vetterli, 2002] ...
 - Nonvariational approaches which encodes the spikes positions as the zeros of some polynomial, whose coefficients are derived from the measurements.
 - Generally restricted to Fourier type measurements.
 - Extension to multivariate setting is nontrivial.

- There are efficient algorithms for solving this infinite dimensional problem, e.g. **SDP approaches** [Candès & Fernandez-Granda, 2012; De Castro, Gamboa, Henrion & Lasserre 2015] and **Frank-Wolfe approaches** [Bredies & Pikkarainen 2013; Boyd, Schiebinger & Recht ’15; Denoyelle, Duval & Peyré ’18].
Background on the BLASSO

Recovery of spikes of arbitrary signs require a minimum separation condition:

- [Candès & Fernandez-Granda ’12]: Given \(\{ F \mu_0(k) ; k \in \mathbb{Z}^d, \|k\|_\infty \leq f_c \} \), \(\mu_0 \) can be recovered uniquely if \(\Delta = \min_{i \neq j} \|x_i - x_j\|_\infty \geq \frac{C_d}{f_c} \).

- Many extensions to other measurement operators, minimum separation is *fundamental* (for BLASSO) and often imposed via ad hoc metrics [Bendory et al ’15, Tang ’15].
Background on the BLASSO

Recovery of spikes of arbitrary signs require a minimum separation condition:

- [Candès & Fernandez-Granda ’12]: Given \(\{ \mathcal{F} \mu_0(k); k \in \mathbb{Z}^d, \|k\|_\infty \leq f_c \} \), \(\mu_0 \) can be recovered uniquely if \(\Delta = \min_{i \neq j} \|x_i - x_j\|_\infty \geq \frac{Cd}{f_c} \).

- Many extensions to other measurement operators, minimum separation is fundamental (for BLASSO) and often imposed via ad hoc metrics [Bendory et al ’15, Tang ’15].

Stability for the recovered measure \(\hat{\mu} \):

- Integral type stability estimates [Candès & Fernandez-Granda ’13]: \(\| K_{hi} \ast (\hat{\mu} - \mu_0) \|_1 \).

- Support concentration [Fernandez-Granda ’13; Asaïs, De Castro & Gamboa ’12]:
 Bounds on \(\hat{\mu}(\mathcal{X}_j^{\text{near}}) - a_j \) and \(|\hat{\mu}|(\mathcal{X}_j^{\text{far}}) \).

- Support stability [Duval and Peyré ’15]: in the small noise regime where \(\|w\| \) and \(\lambda \) are sufficiently small, \(\hat{\mu} \) consists of exactly \(s \) spikes, and the recovered amplitudes and positions vary continuously with respect to \(\lambda \) and \(w \).
Background on the BLASSO

Recovery of spikes of arbitrary signs require a minimum separation condition:

- [Candès & Fernandez-Granda ’12]: Given \(\{ F \mu_0(k) ; k \in \mathbb{Z}^d, \|k\|_{\infty} \leq f_c \} \), \(\mu_0 \) can be recovered uniquely if \(\Delta = \min_{i \neq j} \| x_i - x_j \|_{\infty} \geq \frac{C d}{f_c} \).

- Many extensions to other measurement operators, minimum separation is fundamental (for BLASSO) and often imposed via ad hoc metrics [Bendory et al ’15, Tang ’15].

Stability for the recovered measure \(\hat{\mu} \):

- Integral type stability estimates [Candès & Fernandez-Granda ’13]: \(\| K_{hi} * (\hat{\mu} - \mu_0) \|_{L_1} \).

- Support concentration [Fernandez-Granda ’13; Asaïs, De Castro & Gamboa ’12]:
 Bounds on \(\hat{\mu}(\mathcal{X}_{\text{near}}^j) - a_j \) and \(|\hat{\mu}|(\mathcal{X}_{\text{far}}) \).

- Support stability [Duval and Peyré ’15]: in the small noise regime where \(\|w\| \) and \(\lambda \) are sufficiently small, \(\hat{\mu} \) consists of exactly \(s \) spikes, and the recovered amplitudes and positions vary continuously with respect to \(\lambda \) and \(w \).

Subsampling in the Fourier setting:

- [Tang et al ’13]: If \(\text{sign}(a_j)^{s}_{j=1} \) is a Steinhaus sequence and \(\Delta \geq \frac{C}{f_c} \), then exact recovery is guaranteed with \(\mathcal{O}(s \log(f_c) \log(s)) \) number of noiseless random Fourier coefficients.

- Extended to two dimensional setting by [Chi & Chen ’15]. So far, removal of the random signs assumption results in \(\mathcal{O}(s^2) \) measurements [Li & Chi ’17].
Background on the BLASSO

Recovery of spikes of arbitrary signs require a minimum separation cond.:
- [Candès & Fernandez-Granda ’12]: Given \(\{ \mathcal{F} \mu_0(k) ; k \in \mathbb{Z}^d, \| k \|_\infty \leq f_c \} \), \(\mu_0 \) can be recovered uniquely if \(\Delta = \min_{i \neq j} \| x_i - x_j \|_\infty \geq \frac{C_d}{f_c} \).

- Many extensions to other measurement operators, minimum separation is fundamental (for BLASSO) and often imposed via ad-hoc metrics [Bendory et al ’15, Tang ’15].

Stability for the recovered measure \(\hat{\mu} \):
- Integral type stability estimates [Candès & Fernandez-Granda ’13]: \(\| K_{hi} \ast (\hat{\mu} - \mu_0) \|_{L_1} \).

- Support concentration [Fernandez-Granda ’13; Asaïs, De Castro & Gamboa ’12]:
 Bounds on \(\hat{\mu}(\mathcal{X}_j^{\text{near}}) - a_j \) and \(|\hat{\mu}|(\mathcal{X}_j^{\text{far}}) \).

- Support stability [Duval and Peyré ’15]: in the small noise regime where \(\| w \| \) and \(\lambda \) are sufficiently small, \(\hat{\mu} \) consists of exactly \(s \) spikes, and the recovered amplitudes and positions vary continuously with respect to \(\lambda \) and \(w \).

Subsampling in the Fourier setting:
- [Tang et al ’13]: If sign(\(a_j \))\(s_{j=1}^s \) is a Steinhaus sequence and \(\Delta \geq \frac{C}{f_c} \), then exact recovery is guaranteed with \(\mathcal{O}(s \log(f_c) \log(s)) \) number of noiseless random Fourier coefficients.

- Extended to two dimensional setting by [Chi & Chen ’15]. So far, removal of the random signs assumption results in \(\mathcal{O}(s^2) \) measurements [Li & Chi ’17].
Background on the BLASSO

Recovery of spikes of arbitrary signs require a **minimum separation cond.**:

- **[Candès & Fernandez-Granda ’12]:** Given \(\{ \mathcal{F} \mu_0(k) ; k \in \mathbb{Z}^d, \|k\|_\infty \leq f_c \} \), \(\mu_0 \) can be recovered uniquely if \(\Delta = \min_{i \neq j} \|x_i - x_j\|_\infty \geq \frac{C_d}{f_c} \).

- Many extensions to other measurement operators, minimum separation is **fundamental** (for BLASSO) and often imposed via **ad-hoc** metrics [Bendory et al ’15, Tang ’15].

Stability for the recovered measure \(\hat{\mu} \):

- Integral type stability estimates **[Candès & Fernandez-Granda ’13]:** \(\|K_{hi} \ast (\hat{\mu} - \mu_0)\|_{L^1} \).

- Support concentration **[Fernandez-Granda ’13; Asaïs, De Castro & Gamboa ’12]:**
 Bounds on \(|\hat{\mu}(\mathcal{X}^{\text{near}}_j) - a_j| \) and \(|\hat{\mu}|(\mathcal{X}^{\text{far}}) \).

- **Support stability** **[Duval and Peyré ’15]:** in the small noise regime where \(\|w\| \) and \(\lambda \) are sufficiently small, \(\hat{\mu} \) consists of **exactly** \(s \) spikes, and the recovered amplitudes and positions vary continuously with respect to \(\lambda \) and \(w \).

Subsampling in the Fourier setting:

- **[Tang et al ’13]:** If \(\text{sign}(a_j)_{j=1}^s \) is a Steinhaus sequence and \(\Delta \geq \frac{C}{f_c} \), then exact recovery is guaranteed with \(\mathcal{O}(s \log(f_c) \log(s)) \) number of **noiseless** random Fourier coefficients.

- Extended to two dimensional setting by **[Chi & Chen ’15].** So far, removal of the random signs assumption results in \(\mathcal{O}(s^2) \) measurements [Li & Chi ’17].
Background on the BLASSO

Recovery of spikes of arbitrary signs require a minimum separation cond.:

- [Candès & Fernandez-Granda ’12]: Given \(\{ F\mu_0(k) ; \, k \in \mathbb{Z}^d, \|k\|_\infty \leq f_c \} \), \(\mu_0 \) can be recovered uniquely if \(\Delta = \min_{i \neq j} \|x_i - x_j\|_\infty \geq \frac{C_d}{f_c} \).

- Many extensions to other measurement operators, minimum separation is fundamental (for BLASSO) and often imposed via ad-hoc metrics [Bendory et al ’15, Tang ’15].

Stability for the recovered measure \(\hat{\mu} \):

- Integral type stability estimates [Candès & Fernandez-Granda ’13]: \(\|K_{hi} \ast (\hat{\mu} - \mu_0)\|_{L_1} \).

- Support concentration [Fernandez-Granda ’13; Asaïs, De Castro & Gamboa ’12]: Bounds on \(\|\hat{\mu}(\mathcal{X}^{\text{near}}_j) - a_j\| \) and \(|\hat{\mu}|(\mathcal{X}^{\text{far}}) \).

- Support stability [Duval and Peyré ’15]: in the small noise regime where \(\|w\| \) and \(\lambda \) are sufficiently small, \(\hat{\mu} \) consists of exactly \(s \) spikes, and the recovered amplitudes and positions vary continuously with respect to \(\lambda \) and \(w \).

Subsampling in the Fourier setting:

- [Tang et al ’13]: If \(\text{sign}(a_j)_{j=1}^s \) is a Steinhaus sequence and \(\Delta \geq \frac{C}{f_c} \), then exact recovery is guaranteed with \(O(s \log(f_c) \log(s)) \) number of noiseless random Fourier coefficients.

- Extended to two dimensional setting by [Chi & Chen ’15]. So far, removal of the random signs assumption results in \(O(s^2) \) measurements [Li & Chi ’17].
Outline

1. Compressed sensing off-the-grid

2. The Fisher metric and the minimum separation condition

3. Support stability for the subsampled problem

4. Ideas behind the proofs – Dual certificates

5. Removal of random signs assumption
The covariance kernel

Define the covariance kernel: \(\hat{K}(x, x') \) \(\overset{\text{def.}}{=} \frac{1}{m} \sum_{k=1}^{m} \varphi_{\omega_k}(x) \varphi_{\omega_k}(x') \), and the limit covariance kernel as \(K(x, x') \) \(\overset{\text{def.}}{=} \mathbb{E}[\hat{K}(x, x')] = \int \varphi_{\omega}(x) \varphi_{\omega}(x') d\Lambda(\omega) \).

Denote \(\hat{f} \overset{\text{def.}}{=} \Phi^* y = \int \hat{K}(x, x') d\mu_0(x') + \Phi^* w \in C(\mathcal{X}) \). The BLASSO can be rewritten as

\[
\min_{\mu \in \mathcal{M}(\mathcal{X})} \frac{1}{2} \int \hat{K}(x, x') d\overline{\mu}(x) d\mu(x') - \text{Re}\langle \hat{f}, \mu \rangle + \lambda |\mu| (\mathcal{X}) \quad (\hat{P}_\lambda(y))
\]

and

\[
\min_{\mu \in \mathcal{M}(\mathcal{X})} |\mu| (\mathcal{X}) \text{ subject to } \int \hat{K}(x, x') d(\overline{\mu - \mu_0})(x) d(\mu - \mu_0)(x') = 0. \quad (\hat{P}_0(y_0))
\]
The covariance kernel

Define the covariance kernel: $\hat{K}(x,x') \overset{\text{def.}}{=} \frac{1}{m} \sum_{k=1}^{m} \varphi_{\omega_k}(x)\varphi_{\omega_k}(x')$, and the limit covariance kernel as $K(x,x') \overset{\text{def.}}{=} \mathbb{E}[\hat{K}(x,x')] = \int \varphi_{\omega}(x)\varphi_{\omega}(x')d\Lambda(\omega)$.

Denote $\hat{f} \overset{\text{def.}}{=} \Phi^*y = \int \hat{K}(x,x')d\mu_0(x') + \Phi^*w \in C(\mathcal{X})$. The BLASSO can be rewritten as

$$\min_{\mu \in \mathcal{M}(\mathcal{X})} \frac{1}{2} \int \hat{K}(x,x')d\mu(x)d\mu(x') - \text{Re}\langle \hat{f}, \mu \rangle + \lambda |\mu|_{(\mathcal{X})} \quad (\hat{P}_\lambda(y))$$

and

$$\min_{\mu \in \mathcal{M}(\mathcal{X})} |\mu|_{(\mathcal{X})} \text{ subject to } \int \hat{K}(x,x')d(\mu - \mu_0)(x)d(\mu - \mu_0)(x') = 0. \quad (\hat{P}_0(y_0))$$

Before discussing the role of subsampling, let’s look at the limit problem associated to K.

What separation conditions should we impose to guarantee recovery of $\mu_0 = \sum_{j=1}^{s} a_j \delta_{x_j}$?
Define the covariance kernel: \(\hat{K}(x, x') \overset{\text{def.}}{=} \frac{1}{m} \sum_{k=1}^{m} \varphi_{\omega_k}(x) \varphi_{\omega_k}(x') \), and the limit covariance kernel as \(K(x, x') \overset{\text{def.}}{=} \mathbb{E}[\hat{K}(x, x')] = \int \varphi_{\omega}(x) \varphi_{\omega}(x') d\Lambda(\omega) \).

Denote \(f \overset{\text{def.}}{=} \int K(x, x') d\mu_0(x') + \varepsilon \in \mathcal{C}(\mathcal{X}) \). The BLASSO can be rewritten as

\[
\min_{\mu \in \mathcal{M}(\mathcal{X})} \frac{1}{2} \int K(x, x') d\overline{\mu}(x) d\mu(x') - \text{Re} \langle f, \mu \rangle + \lambda |\mu| (\mathcal{X}) \quad (P_\lambda(f))
\]

and

\[
\min_{\mu \in \mathcal{M}(\mathcal{X})} |\mu| (\mathcal{X}) \text{ subject to } \int K(x, x') d(\mu - \mu_0)(x) d(\mu - \mu_0)(x') = 0. \quad (P_0(f_0))
\]

Before discussing the role of subsampling, let's look at the limit problem associated to \(K \).

What separation conditions should we impose to guarantee recovery of \(\mu_0 = \sum_{j=1}^{s} a_j \delta_{x_j} \)?
The Fisher metric

Assume that for all \(x \in \mathcal{X} \), \(\mathbb{E}_\omega [|\phi_\omega(x)|^2] = 1 \). Let \(H_x \overset{\text{def.}}{=} \nabla_1 \nabla_2 K(x, x) \in \mathbb{C}^{d \times d} \) and assume that \(H_x \) is positive definite for all \(x \in \mathcal{X} \).
The Fisher metric

Assume that for all \(x \in \mathcal{X} \), \(\mathbb{E}_\omega[|\varphi_\omega(x)|^2] = 1 \). Let \(H_x \overset{\text{def.}}{=} \nabla_1 \nabla_2 K(x, x) \in \mathbb{C}^{d \times d} \) and assume that \(H_x \) is positive definite for all \(x \in \mathcal{X} \).

- \(f(x, \omega) \overset{\text{def.}}{=} |\varphi_\omega(x)|^2 \) can be interpreted as a probability density function for the random variable \(\omega \) conditional on parameter \(x \in \mathcal{X} \) and its Fisher information matrix is:

\[
\int \nabla (\log f(x, \omega)) \nabla (\log f(x, \omega))^\top f(x, \omega) d\Lambda(\omega) = 4H_x.
\]
The Fisher metric

Assume that for all \(x \in \mathcal{X} \), \(\mathbb{E}_\omega[|\varphi_\omega(x)|^2] = 1 \). Let \(\mathbf{H}_x \overset{\text{def.}}{=} \nabla_1 \nabla_2 K(x, x) \in \mathbb{C}^{d \times d} \) and assume that \(\mathbf{H}_x \) is positive definite for all \(x \in \mathcal{X} \).

- \(f(x, \omega) \overset{\text{def.}}{=} |\varphi_\omega(x)|^2 \) can be interpreted as a probability density function for the random variable \(\omega \) conditional on parameter \(x \in \mathcal{X} \) and its Fisher information matrix is:

\[
\int \nabla (\log f(x, \omega)) \nabla (\log f(x, \omega))^\top f(x, \omega) d\Lambda(\omega) = 4\mathbf{H}_x.
\]

- \(\mathbf{H} \) naturally induces a distance between points on \(\mathcal{X} \). Given a curve \(\gamma : [0, 1] \to \mathcal{X} \), \(\ell_\mathbf{H}[\gamma] \overset{\text{def.}}{=} \int_0^1 \sqrt{\langle \mathbf{H}_{\gamma(t)} \gamma'(t), \gamma'(t) \rangle} \) and given \(x, x' \in \mathcal{X} \),

\[
d_\mathbf{H}(x, x') \overset{\text{def.}}{=} \inf \{ \ell_\mathbf{H}[\gamma] ; \gamma : [0, 1] \to \mathcal{X}, \gamma(0) = x, \gamma(1) = x' \}.
\]

Also called the “Fisher-Rao” geodesic distance, this is used extensively in information geometry for estimation and learning problems on parametric families of distributions (Amari and Nagaoka, 2007).
The Fisher metric

Assume that for all \(x \in \mathcal{X} \), \(\mathbb{E}_\omega[|\varphi_\omega(x)|^2] = 1 \). Let \(H_x \overset{\text{def.}}{=} \nabla_1 \nabla_2 K(x, x) \in \mathbb{C}^{d \times d} \) and assume that \(H_x \) is positive definite for all \(x \in \mathcal{X} \).

- \(f(x, \omega) \overset{\text{def.}}{=} |\varphi_\omega(x)|^2 \) can be interpreted as a probability density function for the random variable \(\omega \) conditional on parameter \(x \in \mathcal{X} \) and its Fisher information matrix is:

\[
\int \nabla (\log f(x, \omega)) \nabla (\log f(x, \omega))^\top f(x, \omega) d\Lambda(\omega) = 4H_x.
\]

- \(H \) naturally induces a distance between points on \(\mathcal{X} \). Given a curve \(\gamma : [0, 1] \to \mathcal{X} \),

\[
\ell_H[\gamma] \overset{\text{def.}}{=} \int_0^1 \sqrt{\langle H_{\gamma(t)} \gamma'(t), \gamma'(t) \rangle} dt
\]

and given \(x, x' \in \mathcal{X} \),

\[
d_H(x, x') \overset{\text{def.}}{=} \inf \{ \ell_H[\gamma] ; \gamma : [0, 1] \to \mathcal{X}, \gamma(0) = x, \gamma(1) = x' \}.
\]

Also called the “Fisher-Rao” geodesic distance, this is used extensively in information geometry for estimation and learning problems on parametric families of distributions (Amari and Nagaoka, 2007).

Theorem

Under some generic conditions on \(K \) and \(\Delta \), if \(\min_{j \neq k} d_H(x_j, x_k) \geq \Delta \) and \(s \leq s_{\text{max}} \), then \(\mu_0 \) can be exactly (stably) recovered as a solution to \(\mathcal{P}_0(f) \) (to \(\mathcal{P}_\lambda(f) \)).
Notation for derivatives

We can interpret the r^{th} derivative as a multilinear map $\nabla^r f : (\mathbb{C}^d)^r \to \mathbb{C}$, given $Q = \{q_\ell\}_{\ell=1}^r \in (\mathbb{C}^d)^r$,

$$\nabla^r f[Q] = \sum_{i_1, \ldots, i_r} \partial_{i_1} \cdots \partial_{i_r} f(x)q_{i_1} \cdots q_{i_r}.$$

The normalised r^{th} derivative is

$$D_r[f](x)[Q] = \nabla^r f(x)[\{H_x^{-\frac{1}{2}} q_i\}_{i=1}^r].$$

and $K_{ij}(x, x') : (\mathbb{C}^d)^i \times (\mathbb{C}^d)^j \to \mathbb{C}$ is defined by

$$K^{(ij)}[Q, V] \overset{\text{def.}}{=} \mathbb{E} \left(\overline{D_i[\varphi_\omega][Q]} \cdot D_j[\varphi_\omega][V] \right).$$
Admissible kernels

A kernel K will be said *admissible* with respect to $\{r_{\text{near}}, \Delta, \varepsilon_i, B_{ij}, s_{\text{max}}\}$, if

\[K(x', 0) \]

For simplicity, assume that K is real-valued.
Admissible kernels

A kernel K will be said *admissible* with respect to $\{r_{\text{near}}, \Delta, \varepsilon_i, B_{ij}, s_{\text{max}}\}$, if

Sufficient peak:

- For $d_H(x, x') \geq r_{\text{near}}$, $|K(x, x')| \leq 1 - \varepsilon_0$.
- For $d_H(x, x') \leq r_{\text{near}}$, $K^{(02)}(x, x') \preceq -\varepsilon_2 \text{Id}$
Admissible kernels
A kernel K will be said \textit{admissible} with respect to $\{r_{\text{near}}, \Delta, \varepsilon_i, B_{ij}, s_{\text{max}}\}$, if

Sufficient peak:
- For $d_{\mathbf{H}}(x, x') \geq r_{\text{near}}$, $|K(x, x')| \leq 1 - \varepsilon_0$.
- For $d_{\mathbf{H}}(x, x') \leq r_{\text{near}}$, $K^{(02)}(x, x') \leq -\varepsilon_2 \text{Id}$

Sufficient decay:
- For $d_{\mathbf{H}}(x, x') \geq \Delta/4$, $\|K^{(ij)}(x, x')\| \leq \frac{h}{s_{\text{max}}}$, where $i, j \in \{0, \ldots, 2\}$ with $i + j \leq 3$, $h \overset{\text{def.}}{=} \min_{i \in \{0, 2\}} \left(\frac{\varepsilon_i}{32B_{1i} + 32}\right)$.

Theorem
Suppose that K is admissible, and $\mu_0 = \sum_{s_{ij}} a_{ij} \delta_{x_j}$ with $\min_j \neq k d_{\mathbf{H}}(x_j, x_k) \geq \Delta$ and $s \leq s_{\text{max}}$. Then, μ_0 can be exactly (stably) recovered as a solution to $P_0(f)$ (to $P_\lambda(f)$).

NB: in general, $\varepsilon_i, r_{\text{near}}, B_{ij}, C_{\mathbf{H}}$ are just constants (possibly dependent on $d_{\mathbf{H}}$), but independent of problem parameters.
Admissible kernels

A kernel K will be said admissible with respect to \{\(r_{\text{near}}, \Delta, \varepsilon_i, B_{ij}, s_{\text{max}}\)\}, if

- **Sufficient peak:**
 - For \(d_H(x, x') \geq r_{\text{near}}, \|K(x, x')\| \leq 1 - \varepsilon_0\).
 - For \(d_H(x, x') \leq r_{\text{near}}, K^{(02)}(x, x') \leq -\varepsilon_2 \text{Id}\)

- **Sufficient decay:**
 - For \(d_H(x, x') \geq \Delta/4, \|K^{(ij)}(x, x')\| \leq \frac{h}{s_{\text{max}}}, \) where \(i, j \in \{0, \ldots, 2\}\) with \(i + j \leq 3\),
 \(h \overset{\text{def.}}{=} \min_{i \in \{0,2\}} \left(\frac{\varepsilon_i}{32B_{1i} + 32}\right)\).

- **Uniform bounds:** \(\sup_{x, x' \in \mathcal{X}} \|K^{(ij)}(x, x')\| \leq B_{ij}\) for \(i, j \in \{0, 1, 2\}\).
 - Additionally, for \(d_H(x, x') \leq r_{\text{near}}: \left\| \text{Id} - H_x^{-\frac{1}{2}}H^\frac{1}{2} \right\| \leq C_H d_H(x, x')\).
Admissible kernels

A kernel K will be said *admissible* with respect to $\{r_{\text{near}}, \Delta, \varepsilon_i, B_{ij}, s_{\text{max}}\}$, if

Suppose that K is admissible, and $\mu_0 = \sum_{j=1}^{s} a_j \delta_{x_j}$ with $\min_{j \neq k} d_H(x_j, x_k) \geq \Delta$ and $s \leq s_{\text{max}}$. Then, μ_0 can be exactly (stably) recovered as a solution to $P_0(f)$ (to $P_{\lambda}(f)$).

NB: in general, $\varepsilon_i, r_{\text{near}}, B_{ij}, C_H$ are just constants (possibly dependent on d), but independent of problem parameters.
Examples

<table>
<thead>
<tr>
<th>Discrete Fourier</th>
<th>Continuous Fourier</th>
<th>Microscopy (Laplace trans.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi_\omega(x) = e^{i 2\pi \omega^\top x}$</td>
<td>$\varphi_\omega(x) = e^{i \omega^\top x}$</td>
<td>$\varphi_\omega(x) = \prod_{i=1}^{d} \sqrt{\frac{2(x_i + \alpha_i)}{\alpha_i}} e^{-\omega^\top x}$</td>
</tr>
<tr>
<td>$\Lambda \propto \prod_i g(\omega_j)$ on $[-f_c, f_c]^d$</td>
<td>$\Lambda = \mathcal{N}(0, \Sigma)$ on \mathbb{R}^d</td>
<td>$\Lambda \propto e^{-\alpha^\top \omega}$ on \mathbb{R}^d_+</td>
</tr>
</tbody>
</table>

Random features

Kernel

Jackson $\prod_i \kappa(x_i - x'_i)$

Gaussian $\uparrow e^{-\|x - x'\|_\Sigma}$

$\Pi_i \kappa(x_i + \alpha_i, x'_i + \alpha_i)$,

$\kappa(x, x') = \frac{\sqrt{4xx'^\top}}{x + x'}$

Metric and separation

$H_x = C_{f_c} \text{Id}$ \uparrow

$H_x = \Sigma$

$H_x = \text{diag} \left(\frac{1}{4(x_i + \alpha_i)^2} \right)$

$d_H(x, x') = C_{f_c}^{\frac{1}{2}} \|x - x'\|_2$

$d_H(x, x') = \|x - x'\|_\Sigma$

$d_H(x, x') = \sqrt{\sum_i \left| \log \left(\frac{x_i + \alpha_i}{x'_i + \alpha_i} \right) \right|^2}$

$\Delta = \sqrt{d \sqrt{s}}$

$\Delta = \sqrt{\log(s)}$

$\Delta = d + \log(ds)$

$\uparrow C_{f_c} = \frac{\pi^2}{3} f_c (f_c + 4) \sim f_c^2$
Examples

<table>
<thead>
<tr>
<th>Discrete Fourier</th>
<th>Continuous Fourier</th>
<th>Microscopy (Laplace trans.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi_\omega(x) = e^{i2\pi \omega^\top x}$</td>
<td>$\varphi_\omega(x) = e^{i\omega^\top x}$</td>
<td>$\varphi_\omega(x) = \prod_{i=1}^{d} \sqrt{\frac{2(x_i + \alpha_i)}{\alpha_i}} e^{-\omega^\top x}$</td>
</tr>
<tr>
<td>$\Lambda \propto \prod_i g(\omega_j)$ on $[-f_c, f_c]^d$</td>
<td>$\Lambda = \mathcal{N}(0, \Sigma)$ on \mathbb{R}^d</td>
<td>$\Lambda \propto e^{-\alpha^\top \omega}$ on \mathbb{R}_+^d</td>
</tr>
</tbody>
</table>

Random features

- **Jackson** $\prod_i \kappa(x_i - x'_i)$
- **Gaussian** $e^{-\|x-x'\|\Sigma}$
- **Kernel** $\prod_i \kappa(x_i + \alpha_i, x'_i + \alpha_i)$,

Metric and separation

- **$H_x = C_{f_c} \text{Id}$**
- $d_H(x, x') = C_{f_c}^{\frac{1}{2}} \|x - x'\|_2$
- $\Delta = \sqrt{d\sqrt{s}}$

- **$H_x = \Sigma$**
- $d_H(x, x') = \|x - x'\|_\Sigma$
- $\Delta = \sqrt{\log(s)}$

- **$H_x = \text{diag} \left(\frac{1}{4(x_i + \alpha_i)^2} \right)$**
- $d_H(x, x') = \sqrt{\sum_i \left| \log \left(\frac{x_i + \alpha_i}{x'_i + \alpha_i} \right) \right|^2}$
- $\Delta = d + \log(ds)$

Our result: $\|x_i - x_j\| \gtrsim \frac{\sqrt{d} \sqrt{s}}{f_c}$,
Candès & Fernandez-Granda: $\|x_i - x_j\| \gtrsim \frac{C_d}{f_c}$
Examples

<table>
<thead>
<tr>
<th>Discrete Fourier</th>
<th>Continuous Fourier</th>
<th>Microscopy (Laplace trans.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi_\omega(x) = e^{i2\pi \omega^\top x})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Lambda \propto \prod_j g(\omega_j)) on ([-f_c, f_c]^d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\varphi_\omega(x) = e^{i\omega^\top x})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Lambda = \mathcal{N}(0, \Sigma)) on (\mathbb{R}^d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\varphi_\omega(x) = \prod_{i=1}^d \sqrt{\frac{2(x_i + \alpha_i)}{\alpha_i}} e^{-\omega^\top x})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Lambda \propto e^{-\alpha^\top \omega}) on (\mathbb{R}_+^d)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Random features

- **Jackson** \(\prod_i \kappa(x_i - x'_i) \)
- **Gaussian** \(e^{-\|x - x'\|^2/\Sigma} \)
- **Kernel** \(\prod_i \kappa(x_i + \alpha_i, x'_i + \alpha_i) \), \(\kappa(x, x') = \frac{\sqrt{4xx'}}{x + x'} \)

Metric and separation

- \(\mathbf{H}_x = C_{f_c} \text{Id} \) \(\text{‡} \)
- \(d_{\mathbf{H}}(x, x') = C_{f_c}^{\frac{1}{2}} \|x - x'\|_2 \)
- \(\Delta = \sqrt{d\sqrt{s}} \)
- \(\text{\textdagger} \|x\|_\Sigma = \langle \Sigma x, x \rangle \)

- \(\mathbf{H}_x = \Sigma \)
- \(d_{\mathbf{H}}(x, x') = \|x - x'\|_\Sigma \)
- \(\Delta = \sqrt{\log(s)} \)

- \(\mathbf{H}_x = \text{diag} \left(\frac{1}{4(x_i + \alpha_i)^2} \right) \)
- \(d_{\mathbf{H}}(x, x') = \sqrt{\sum_i \log \left(\frac{x_i + \alpha_i}{x'_i + \alpha_i} \right)} \)
- \(\Delta = d + \log(ds) \)
Outline

1. Compressed sensing off-the-grid

2. The Fisher metric and the minimum separation condition

3. Support stability for the subsampled problem

4. Ideas behind the proofs – Dual certificates

5. Removal of random signs assumption
The subsampled setting

Assumption 1

- K is admissible, $\mu_0 = \sum_{j=1}^{s} a_j \delta_{x_j}$ with $\min_{j \neq k} d_H(x_j, x_k) \geq \Delta$ and $s \leq s_{\text{max}}$.
- \mathcal{X} is a compact domain with $R_{\mathcal{X}} \overset{\text{def.}}{=} \sup_{x, x' \in \mathcal{X}} d_H(x, x')$.

$B = B_{00} + B_{02} + B_{10} + B_{12}$,
The subsampled setting

Assumption 1

- K is admissible, $\mu_0 = \sum_{j=1}^{s} a_j \delta_{x_j}$ with $\min_{j \neq k} d_H(x_j, x_k) \geq \Delta$ and $s \leq s_{\text{max}}$.
- \mathcal{X} is a compact domain with $R_{\mathcal{X}} \overset{\text{def.}}{=} \sup_{x, x' \in \mathcal{X}} d_H(x, x')$.

To analyse the subsampled case, we need to control the deviation of \hat{K} from K.

Ideally, $L_r(\omega) = \sup_{x \in \mathcal{X}} \| D_r[\varphi_\omega](x) \|$ are uniformly bounded. But...

$$\varphi_\omega(x) = \exp(i\omega^T x) \implies \| D_r[\varphi_\omega](x) \| \propto \| \omega \|_{\Sigma^{-1}}^r,$$

on the other hand $\mathbb{P}(\| \omega \|_{\Sigma^{-1}} > \epsilon) \leq 2^{d/2} e^{-\epsilon^2/4}$.
The subsampled setting

Assumption 1

- \(K \) is admissible, \(\mu_0 = \sum_{j=1}^{s} a_j \delta_{x_j} \) with \(\min_{j \neq k} d_H(x_j, x_k) \geq \Delta \) and \(s \leq s_{\text{max}} \).
- \(\mathcal{X} \) is a compact domain with \(R_{\mathcal{X}} \stackrel{\text{def.}}{=} \sup_{x, x' \in \mathcal{X}} d_H(x, x') \).

Let \(L_r(\omega) \stackrel{\text{def.}}{=} \sup_{x \in \mathcal{X}} \| D_r[\varphi_{\omega}](x) \| \)

Assumption 2

With high probability, \(L_r(\omega_k) \leq \bar{L}_r \) for \(r = 0, 1, 2, 3 \) and \(k = 1, \ldots, m \). and either one of the following hold:

- \(\text{sign}(a) \) is a Steinhaus sequence and \(m \gtrsim C \cdot s \cdot \log \left(\frac{N^d}{\rho} \right) \log \left(\frac{s}{\rho} \right) \),
- \(\text{sign}(a) \) is an arbitrary sign sequence and \(m \gtrsim C \cdot s^{3/2} \cdot \log \left(\frac{N^d}{\rho} \right) \),

where \(C \stackrel{\text{def.}}{=} \varepsilon^{-2}(\| B_{11} \|_2 + \| B_{22} \|_1 + \| B \|_1) \), \(N \stackrel{\text{def.}}{=} \frac{d \cdot R_{\mathcal{X}} \cdot \mathbb{L}_3}{r_{\text{near} \varepsilon}} \).

\(B = B_{00} + B_{02} + B_{10} + B_{12}, \varepsilon = \min\{\varepsilon_0, \varepsilon_2\}, \mathbb{L}_r = \max_{i \leq r} \bar{L}_i \)
The subsampled setting

Assumption 1

- K is admissible, $\mu_0 = \sum_{j=1}^{s} a_j \delta_{x_j}$ with $\min_{j \neq k} d_H(x_j, x_k) \geq \Delta$ and $s \leq s_{\max}$.
- \mathcal{X} is a compact domain with $R_{\mathcal{X}} \overset{\text{def.}}{=} \sup_{x, x' \in \mathcal{X}} d_H(x, x')$.

Let $L_r(\omega) \overset{\text{def.}}{=} \sup_{x \in \mathcal{X}} \|D_r[\varphi_\omega](x)\|$ and let F_r be such that $\mathbb{P}_\omega(L_r(\omega) > t) \leq F_r(t)$.

Assumption 2

For $\rho > 0$ (probability of failure) choose $m \in \mathbb{N}$ (number of measurements), and $\{\bar{L}_i\}_{i=0}^{3}$ such that

$$\sum_{j=0}^{3} F_j(\bar{L}_j) \leq \frac{\rho}{m} \quad \text{and} \quad \bar{L}_j^2 \sum_{i=0}^{3} F_i(\bar{L}_i) + 2 \int_{\bar{L}_j}^\infty tF_j(t)dt \leq \frac{\varepsilon}{m}.$$

and either one of the following hold:

- sign(a) is a Steinhaus sequence and $m \geq C \cdot s \cdot \log \left(\frac{N^d}{\rho}\right) \log \left(\frac{s}{\rho}\right)$,
- sign(a) is an arbitrary sign sequence and $m \geq C \cdot s^{3/2} \cdot \log \left(\frac{N^d}{\rho}\right)$,

where $C \overset{\text{def.}}{=} \varepsilon^{-2} (L_2 B_{11} + L_2 B_{22} + L_1 B_1)$, $N \overset{\text{def.}}{=} \frac{d \cdot R_{\mathcal{X}} \cdot \mathbb{L}_3}{r_{\text{near} \varepsilon}}$.

$B = B_{00} + B_{02} + B_{10} + B_{12}$, $\varepsilon = \min\{\varepsilon_0, \varepsilon_2\}$, $\mathbb{L}_r = \max_{i \leq r} \bar{L}_i$
Theorem

Let $\mathcal{D}_{\lambda_0,c_0}^{\text{def.}} = \left\{ (\lambda, w) \in \mathbb{R}_+ \times \mathbb{C}^m ; \lambda \leq \frac{D}{s}, \|w\| \leq c_0 \lambda \right\}$ where

$$D \sim a \min \left(\sqrt{r_{\text{near}}}, \frac{\varepsilon \sqrt{s}}{L_2^2 \|a\|}, \frac{\varepsilon}{C_H (B + L_2^2)} \right) \quad \text{and} \quad c_0 \sim \min \left(\frac{\varepsilon_0}{L_0}, \frac{\varepsilon_2}{L_2} \right) \quad (3.1)$$

and $a = \min \{|a_i|, |a_i|^{-1}\}$.

Then, with probability at least $1 - \rho$,

(i) for all $v^{\text{def.}} = (\lambda, w) \in \mathcal{D}_{\lambda_0,c_0}$, $(\hat{P}_\lambda(y))$ has a unique solution which consists of exactly s spikes.

(ii) The mapping $v \in \mathcal{D}_{\lambda_0,c_0} \mapsto (\hat{a}^v, \{\hat{x}_j^v\}_{j=1}^s)$ is continuously differentiable and we have the error bound

$$\|\hat{a}^v - a\| + \sqrt{\sum_j d_H^2(\hat{x}_j^v, x_{0,j})} \leq \frac{\sqrt{s}(\lambda + \|w\|)}{\min_i |a_i|} \quad (3.2)$$
Examples

<table>
<thead>
<tr>
<th>Discrete Fourier</th>
<th>Continuous Fourier</th>
<th>Laplace transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi_\omega(x) = e^{i2\pi \omega^\top x}$</td>
<td>$\varphi_\omega(x) = e^{i\omega^\top x}$</td>
<td>$\varphi_\omega(x) = \prod_{i=1}^{d} \sqrt{\frac{2(x_i + \alpha_i)}{\alpha_i}} e^{-\omega^\top x}$</td>
</tr>
<tr>
<td>$\Lambda \propto \prod_{j=1}^{d} g_j(\omega_j)$</td>
<td>$\Lambda = \mathcal{N}(0, \Sigma)$</td>
<td>$\Lambda \propto e^{-\alpha^\top \omega}$</td>
</tr>
</tbody>
</table>

Random features

<table>
<thead>
<tr>
<th>No. samples (up to log factors), $p = 1$ for random signs, $p = 3/2$ in general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rand. sgn.: $\mathcal{O}(sd^3)$</td>
</tr>
<tr>
<td>General: $\mathcal{O}(s^{3/2}d^3)$</td>
</tr>
</tbody>
</table>

Stability regions

| $\lambda = \mathcal{O}(s^{-1}d^{-2})$ | $\lambda = \mathcal{O}(s^{-1}d^{-2})$ | $\lambda = \mathcal{O}(s^{-1}d^{-3})$ |
| $\|w\| = \mathcal{O}(s^{-1}d^{-3})$ | $\|w\| = \mathcal{O}(s^{-1}d^{-3})$ | $\|w\| = \mathcal{O}(s^{-1}d^{-5})$ |
Examples

<table>
<thead>
<tr>
<th>Discrete Fourier</th>
<th>Continuous Fourier</th>
<th>Laplace transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi_\omega(x) = e^{i2\pi \omega^\top x})</td>
<td>(\varphi_\omega(x) = e^{i\omega^\top x})</td>
<td>(\varphi_\omega(x) = \prod_{i=1}^{d} \sqrt{\frac{2(x_i + \alpha_i)}{\alpha_i}} e^{-\omega^\top x})</td>
</tr>
<tr>
<td>(\Lambda \propto \prod_{j=1}^{d} g_j(\omega_j))</td>
<td>(\Lambda = \mathcal{N}(0, \Sigma))</td>
<td>(\Lambda \propto e^{-\alpha^\top \omega})</td>
</tr>
</tbody>
</table>

Random features

No. samples (up to log factors), \(p = 1 \) for random signs, \(p = 3/2 \) in general

| Rand. sgn.: \(\mathcal{O}(sd^3) \) | Rand. sgn.: \(\mathcal{O}(sd^3) \) | Rand. sgn.: \(\mathcal{O}(sd^7) \) |
| General: \(\mathcal{O}(s^{3/2}d^3) \) | General: \(\mathcal{O}(s^{3/2}d^3) \) | General: \(\mathcal{O}(s^{3/2}d^7) \) |

Stability regions

| \(\lambda = \mathcal{O}(s^{-1}d^{-2}) \) | \(\lambda = \mathcal{O}(s^{-1}d^{-2}) \) | \(\lambda = \mathcal{O}(s^{-1}d^{-3}) \) |
| \(\|w\| = \mathcal{O}(s^{-1}d^{-3}) \) | \(\|w\| = \mathcal{O}(s^{-1}d^{-3}) \) | \(\|w\| = \mathcal{O}(s^{-1}d^{-5}) \) |

- Linear in sparsity when we have random signs.
- Improvement from \(s^2 \) to \(s^{3/2} \) in the arbitrary signs case.
- Dependency on \(d \) is still in progress.
Gaussian mixture estimation (1D)

Task: Suppose we have data \(\{ t_1, \ldots, t_n \} \) drawn from

\[
\xi = \sum_{j=1}^{s} a_j \mathcal{N}(m_j, s_j^2), \quad \text{where} \quad a_j > 0 \quad \text{and} \quad \sum_j a_j = 1
\]

Find \(a_j \in \mathbb{R}_+ \), \(x_j \overset{\text{def.}}{=} (m_j, s_j) \in \mathbb{R} \times \mathbb{R}_+ \), \(j = 1, \ldots, s \).
Gaussian mixture estimation (1D)

Task: Suppose we have data \(\{t_1, \ldots, t_n\} \) drawn from

\[
\xi = \sum_{j=1}^{s} a_j \mathcal{N}(m_j, s_j^2), \quad \text{where} \quad a_j > 0 \quad \text{and} \quad \sum_j a_j = 1
\]

Find \(a_j \in \mathbb{R}_+ \), \(x_j \overset{\text{def.}}{=} (m_j, s_j) \in \mathbb{R} \times \mathbb{R}_+, \ j = 1, \ldots, s \).

Observe: \(y \in \mathbb{C}^m \) of \(m \) sketches against sketching functions \(\theta_\omega(t) \):

\[
y_k \overset{\text{def.}}{=} \frac{1}{n} \sum_{j=1}^{n} \theta_\omega(t_j) \approx \int_\mathcal{X} \int_\mathcal{T} \theta_\omega(t) \xi(t) dt = \int_\mathcal{X} \int_\mathcal{T} \theta_\omega(t) \xi_x(t) dt d\mu_0(x),
\]

where \(\xi_x = \mathcal{N}(m, s^2) \).

i.e. our sparse spikes problem with \(\mu_0 \overset{\text{def.}}{=} \sum_{i=1}^{s} a_i \delta(m_i, s_i) \) and \(\varphi_\omega(x) \overset{\text{def.}}{=} \int_\mathcal{T} \theta_\omega(t) \xi_x(t) dt \).
Gaussian mixture estimation (1D)

Task: Suppose we have data \(\{t_1, \ldots, t_n\} \) drawn from

\[
\xi = \sum_{j=1}^{s} a_j N(m_j, s_j^2), \quad \text{where } a_j > 0 \text{ and } \sum_j a_j = 1
\]

Find \(a_j \in \mathbb{R}_+ \), \(x_j \overset{\text{def.}}{=} (m_j, s_j) \in \mathbb{R} \times \mathbb{R}_+, j = 1, \ldots, s \).

Observe: \(y \in \mathbb{C}^m \) of \(m \) sketches against sketching functions \(\theta_\omega(t) \):

\[
y_k \overset{\text{def.}}{=} \frac{1}{n} \sum_{j=1}^{n} \theta_{\omega_k}(t_j) \approx \int \theta_{\omega_k}(t) \xi(t) dt = \int \int \theta_{\omega_k}(t) \xi_x(t) dtd\mu_0(x),
\]

where \(\xi_x = N(m, s^2) \).

i.e. our sparse spikes problem with \(\mu_0 \overset{\text{def.}}{=} \sum_{i=1}^{s} a_i \delta(m_i, s_i) \) and \(\varphi_\omega(x) \overset{\text{def.}}{=} \int \theta_\omega(t) \xi_x(t) dt \).

Fourier sketching

Suppose that \(\theta_{\omega_k}(t) = \exp(-i\omega_k t) \), where \(\omega_k \sim N(0, \sigma^2) \). Then,

- Random features: \(\varphi_\omega(m, s) = 4\sqrt{2s^2\sigma^2 + 1} \exp \left(-im\omega - \frac{(s\omega)^2}{2} \right) \)
- Noise: \(\|w\|_2 = \mathcal{O} \left(\sqrt{\frac{\log(\rho^{-1})}{n}} \right) \) w.p. \(1 - \rho \).
Support stability for Gaussian mixture estimation (1D)

| **Kernel** | \[
K((m, s), (n, t)) = \sqrt{\frac{2s^2 t_\sigma}{s^2 + t^2}} \exp\left(-\frac{(m-n)^2}{2(s^2 + t^2)}\right)
\]
where \(s_\sigma^2 = \frac{1}{2\sigma^2} + s^2\) |
| **Metric and separation** | \[
H_{(m, s)} = \begin{pmatrix}
\frac{1}{2s^2} & 0 \\
0 & \frac{1}{2s^2}
\end{pmatrix}
\]
\[
d_H((m, s), (n, t)) = 2\text{arcsinh}\left(\frac{1}{2} \sqrt{\frac{(m-n)^2 + (s_\sigma - t_\sigma)^2}{st}}\right)
\]
\(
\Delta = \mathcal{O}(\log(s_{\text{max}})).
\) |
| **No. samples** | Suppose \(\mathcal{X} \subset \mathbb{R} \times (0, A]\) and \(\sigma \propto \frac{1}{A\sqrt{\log(m/\rho)+1}}\).
\(m = \mathcal{O}(s^{3/2})\) (up to log factors) |
| **Stability region** | \[
\lambda = \mathcal{O}(\min |a_i| / (\sqrt{s} \|a\|_2)), \ n = \mathcal{O}(s^2 / \min_i |a_i|^2)
\]
Support stability for Gaussian mixture estimation (1D)

Kernel

$$ K((m, s), (n, t)) = \sqrt{\frac{2s_\sigma t_\sigma}{s_\sigma^2 + t_\sigma^2}} \exp\left(-\frac{(m-n)^2}{2(s_\sigma^2 + t_\sigma^2)}\right) $$

where $s_\sigma^2 = \frac{1}{2\sigma^2} + s^2$

Metric and separation

$$ H_{(m, s)} = \begin{pmatrix} 1/(2s_\sigma^2) & 0 \\ 0 & 1/(2s_\sigma^2) \end{pmatrix} $$

$$ d_H((m, s), (n, t)) = 2\text{arcsinh}\left(\frac{1}{2} \sqrt{\frac{(m-n)^2 + (s_\sigma - t_\sigma)^2}{st}}\right) $$

$$ \Delta = \mathcal{O}(\log(s_{\text{max}})). $$

No. samples

Suppose $\mathcal{X} \subset \mathbb{R} \times (0, A]$ and $\sigma \propto \frac{1}{A \sqrt{\log(m/\rho)+1}}$.

$$ m = \mathcal{O}(s^{3/2}) \quad \text{(up to log factors)} $$

Stability region

$$ \lambda = \mathcal{O}(\min |a_i| / (\sqrt{s} \|a\|_2)), \quad n = \mathcal{O}(s^2 / \min_i |a_i|^2) $$

- No closed form expression for d_H in higher dimensions.
- If $\mu_0 = \sum_i a_i N(x_{0,i}, \Sigma)$ and $\Sigma \in \mathbb{R}^{d \times d}$ is known, then $\omega_k \sim N(0, \Sigma^{-1}/d)$ implies the associated kernel is $\exp\left(-\|x - x'\|_{\Sigma^{-1}/(2+d)}\right)$, support stability guaranteed if
 - $\|x_j - x_\ell\|_{\Sigma^{-1}} \gtrsim \sqrt{d \log(s)}$
 - $m = \mathcal{O}(s^{3/2}d^3)$, $n = \mathcal{O}(s^2d^6 / \min_i |a_i|^2)$ and $\lambda = \mathcal{O}(\min |a_i| / (\sqrt{sd^2} \|a\|_2))$.

22 / 36
Outline

1. Compressed sensing off-the-grid
2. The Fisher metric and the minimum separation condition
3. Support stability for the subsampled problem
4. Ideas behind the proofs – Dual certificates
5. Removal of random signs assumption
Fenchel Duals

The Fenchel dual of $\mathcal{P}_\lambda(y)$ is

$$
\sup_{p \in \mathbb{C}^m, \|\Phi^* p\|_\infty \leq 1} \text{Re}\langle p, y \rangle - \lambda \|p\|_2^2
$$

(4.1)

Note that for $\lambda > 0$, there is a unique dual solution p_λ, since this is equivalent to

$$
\min \|\Phi^* p\|_\infty \leq 1 \|p - y/\lambda\|
$$

which a projection of y/λ onto a closed convex set.
Fenchel Duals

The Fenchel dual of $\mathcal{P}_\lambda(y)$ is

$$
\sup_{p \in \mathbb{C}^m, \|\Phi^* p\|_\infty \leq 1} \Re \langle p, y \rangle - \lambda \|p\|_2^2
$$

(4.1)

Note that for $\lambda > 0$, there is a unique dual solution p_λ, since this is equivalent to

$$
\min \|\Phi^* p\|_\infty \leq 1 \|p - y/\lambda\|
$$

which is a projection of y/λ onto a closed convex set.

Primal dual relations: The dual solution p_λ is related to any primal solution μ_λ by

$$
\Phi^* p_\lambda \in \partial |\mu_\lambda| \quad \text{and} \quad p_\lambda = \frac{1}{\lambda}(y - \Phi \mu_\lambda)
$$

and for $\lambda = 0$, $\Phi^* p_0 \in \partial |\mu_0|$ and $y = \Phi \mu_0$.

η_λ are often called dual certificates.
Fenchel Duals

The Fenchel dual of $P_{\lambda}(y)$ is

$$\sup_{p \in \mathbb{C}^m, \|\Phi^* p\|_\infty \leq 1} \Re\langle p, y \rangle - \lambda \|p\|_2^2$$ \hspace{1cm} (4.1)

Note that for $\lambda > 0$, there is a unique dual solution p_{λ}, since this is equivalent to $\min \|\Phi^* p\|_\infty \leq 1 \|p - y/\lambda\|$ which a projection of y/λ onto a closed convex set.

Primal dual relations: The dual solution p_{λ} is related to any primal solution μ_{λ} by

$$\Phi^* p_{\lambda} \in \partial |\mu_{\lambda}| \quad \text{and} \quad p_{\lambda} = \frac{1}{\lambda} (y - \Phi \mu_{\lambda})$$

and for $\lambda = 0$, $\Phi^* p_0 \in \partial |\mu_0|$ and $y = \Phi \mu_0$.

We have $\partial |\mu| = \{ f \in C(X) ; \|f\|_\infty \leq 1, \langle f, \mu \rangle = |\mu|(X) \}$, and

$$\text{Supp}(\mu_{\lambda}) \subseteq \{ x ; |\eta_{\lambda}(x)| = 1 \}, \quad \text{where} \quad \eta_{\lambda} = \Phi^* p_{\lambda}.$$

η_{λ} are often called dual certificates.
Dual certificate guarantees for sparse measures

Let $\mu_0 = \sum_j a_j \delta_{x_j}$. Then $\partial \mu_0 = \{ f \in C(X) \ ; \ |f|_\infty \leq 1, f(x_j) = \text{sign}(a_j) \}$

Uniqueness: μ_0 is the unique solution if
- $\exists \eta$ such that $\eta(x_j) = \text{sign}(a_j)$, $|\eta(x)| < 1$ for all $x \not\in X$
- $\Phi_X : b \in \mathbb{C}^s \rightarrow \sum_j b_j \varphi(x_j)$ is injective.
Dual certificate guarantees for sparse measures

Let $\mu_0 = \sum_j a_j \delta_{x_j}$. Then $\partial |\mu_0| = \{ f \in C(X) ; \|f\|_\infty \leq 1, f(x_j) = \text{sign}(a_j) \}$

Uniqueness: μ_0 is the unique solution if
- $\exists \eta$ such that $\eta(x_j) = \text{sign}(a_j), |\eta(x)| < 1$ for all $x \not\in X$
- $\Phi_X : b \in \mathbb{C}^s \rightarrow \sum_j b_j \varphi(x_j)$ is injective.

Stability is guaranteed if η is nondegenerate:

$$\forall j \ \text{sign}(a_j) \nabla^2 \eta(x_j) < 0 \quad \text{and} \quad \forall x \not\in \{x_j\}_{j=1}^s, |\eta(x)| < 1$$
Stability

Clustering stability [Candès & Fernandez-Granda ’14 and Azäis, De Castro & Gamboa ’13]
Suppose \(\eta \) is nondegenerate with \(\varepsilon_0, \varepsilon_2 > 0 \), \(\mathcal{X}_{j}^{\text{near}} \ni x_j \) such that

- \(|\eta(x)| \leq 1 - \varepsilon_0 \) for all \(x \in \mathcal{X}^{\text{far}} \) where \(\mathcal{X}^{\text{far}} \text{ def.} = \mathcal{X} \setminus \bigcup_{j=1}^{s} \mathcal{X}_{j}^{\text{near}} \),
- \(\forall i, \forall x \in \mathcal{X}_{i}^{\text{near}}, |\eta(x)| \leq 1 - \varepsilon_2 d_H(x, x_i)^2 \).

Then, for \(\lambda \sim \delta / \| p \| \),

\[
\varepsilon_0 |\hat{\mu}| (\mathcal{X}^{\text{far}}) + \varepsilon_2 \sum_{j=1}^{s} \int_{\mathcal{X}_{j}^{\text{near}}} d_H(x, x_i)^2 d |\hat{\mu}|(x) \lesssim \delta (1 + \| p \|).
\]
Stability

Clustering stability [Candès & Fernandez-Granda ’14 and Azäis, De Castro & Gamboa ’13]

Suppose \(\eta \) is nondegenerate with \(\varepsilon_0, \varepsilon_2 > 0 \), \(\mathcal{X}^{\text{near}}_j \ni x_j \) such that

- \(|\eta(x)| \leq 1 - \varepsilon_0\) for all \(x \in \mathcal{X}^{\text{far}} \) where \(\mathcal{X}^{\text{far}} \defeq \mathcal{X} \setminus \bigcup_{j=1}^{s} \mathcal{X}^{\text{near}}_j \),
- \(\forall i, \forall x \in \mathcal{X}_i^{\text{near}}, |\eta(x)| \leq 1 - \varepsilon_2 d(H(x, x_i))^2 \).

Then, for \(\lambda \sim \delta/\|p\| \), defining \(P_X(|\hat{\mu}|) \defeq \sum_{j=1}^{s} |\hat{\mu}| (\mathcal{X}^{\text{near}}_j) \delta_{x_j} \), we have

\[
T_H^2(|\hat{\mu}|, P_X(|\hat{\mu}|)) \lesssim \frac{\delta \|p\|}{\min\{\varepsilon_0, \varepsilon_2\}}.
\]

where \(T_H^2 \defeq \inf_{\mu, \nu} W_H^2(\hat{\mu}, \hat{\nu}) + |\mu - \hat{\mu}| (\mathcal{X}) + |\nu - \hat{\nu}| (\mathcal{X}) \).
Stability

Clustering stability [Candès & Fernandez-Granda ’14 and Azäis, De Castro & Gamboa ’13]
Suppose η is nondegenerate with $\varepsilon_0, \varepsilon_2 > 0$, $\mathcal{X}_j^{\text{near}} \ni x_j$ such that

- $|\eta(x)| \leq 1 - \varepsilon_0$ for all $x \in \mathcal{X}^{\text{far}}$ where $\mathcal{X}^{\text{far}} \overset{\text{def.}}{=} \mathcal{X} \setminus \bigcup_{j=1}^s \mathcal{X}_j^{\text{near}}$,
- $\forall i, \forall x \in \mathcal{X}_i^{\text{near}}, |\eta(x)| \leq 1 - \varepsilon_2 d_H(x, x_i)^2$.

Then, for $\lambda \sim \delta/\|p\|$, defining $P_\mathcal{X} (|\hat{\mu}|) \overset{\text{def.}}{=} \sum_{j=1}^s |\hat{\mu}| (\mathcal{X}_j^{\text{near}}) \delta_{x_j}$, we have

$$T^2_H (|\hat{\mu}|, P_\mathcal{X} (|\hat{\mu}|)) \lesssim \frac{\delta \|p\|}{\min\{\varepsilon_0, \varepsilon_2\}}.$$

where $T^2_H \overset{\text{def.}}{=} \inf_{\mu, \nu} W^2_H (\hat{\mu}, \hat{\nu}) + |\mu - \hat{\mu}| (\mathcal{X}) + |\nu - \hat{\nu}| (\mathcal{X})$.

Support stability [Duval & Peyré ’15] We have $p_\lambda \to p_0$ where

$$p_0 \overset{\text{def.}}{=} \arg\min \{\|p\| ; \Phi^* p \in \arg\max (\mathcal{D}_0(y))\}$$

If the minimal norm certificate $\eta_0 \overset{\text{def.}}{=} \Phi^* p_0$ is nondegenerate and μ_0 is identifiable, then for λ and $\frac{\|w\|}{\lambda}$ sufficiently small, $\mathcal{P}_\lambda (\Phi \mu_0 + w)$ has unique solution $\mu_{\lambda,w}$ which consists of exactly s spikes and the recovered positions and amplitudes follow a C^1 path as λ and w converge to 0.
What is natural candidate for a nondegenerate solution to $D_0(y)$?
What is natural candidate for a nondegenerate solution to $\mathcal{D}_0(y)$?

In CS, for $\Phi \in \mathbb{C}^{m \times N}$, we need to find $v \in \text{Im}(\Phi^*)$ such that $|v_j| < 1$ for $j \notin T$ and $v_j = \text{sign}(a_j)$ for $j \in T$.
What is natural candidate for a nondegenerate solution to $D_0(y)$?

In CS, for $\Phi \in \mathbb{C}^{m \times N}$, we need to find $v \in \text{Im}(\Phi^*)$ such that $|v_j| < 1$ for $j \notin T$ and $v_j = \text{sign}(a_j)$ for $j \in T$.

In the case $E[\Phi^*\Phi] = \text{Id}$, the Fuchs certificate is an appropriate choice:

$$v = \Phi^*\Phi_T (\Phi_T^*\Phi_T)^{-1} \text{sign}(a_T).$$

By definition, $v_T = \text{sign}(a_T)$.
What is natural candidate for a nondegenerate solution to $\mathcal{D}_0(y)$?

In CS, for $\Phi \in \mathbb{C}^{m \times N}$, we need to find $v \in \text{Im}(\Phi^*)$ such that $|v_j| < 1$ for $j \notin T$ and $v_j = \text{sign}(a_j)$ for $j \in T$.

In the case $\mathbb{E}[\Phi^*\Phi] = \text{Id}$, the Fuchs certificate is an appropriate choice:

$$v = \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} \text{sign}(a_T).$$

By definition, $v_T = \text{sign}(a_T)$.

Vanishing derivatives precertificate [Duval & Peyré ’15]

In our case, for $\alpha \in \mathbb{C}^s$ and $\beta \in \mathbb{C}^{sd}$, define $\Gamma_X : \mathbb{C}^{s(d+1)} \rightarrow \mathbb{C}^m$ by

$$\Gamma_X \left(\begin{array}{c} \alpha \\ \beta \end{array} \right) = \Phi_X \alpha + \Phi^{(1)}_X \beta,$$

where $\Phi_X \alpha = \sum_j \alpha_j \varphi(x_j)$, $\Phi^{(1)}_X \beta = \sum_{j=1}^s \beta_j^\top \nabla \varphi(x_j)$.

Consider

$$\eta_V = \Phi^* \Gamma_X (\Gamma_X^* \Gamma_X)^{-1} \begin{pmatrix} \text{sign}(a) \\ 0_{sd} \end{pmatrix}.$$
What is natural candidate for a nondegenerate solution to \(\mathcal{D}_0(y) \)?

In CS, for \(\Phi \in \mathbb{C}^{m \times N} \), we need to find \(v \in \text{Im}(\Phi^*) \) such that \(|v_j| < 1 \) for \(j \notin T \) and \(v_j = \text{sign}(a_j) \) for \(j \in T \).

In the case \(\mathbb{E}[\Phi^*\Phi] = \text{Id} \), the **Fuchs certificate** is an appropriate choice:

\[
v = \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} \text{sign}(a_T).
\]

By definition, \(v_T = \text{sign}(a_T) \).

Vanishing derivatives precertificate [Duval & Peyré ’15]

In our case, for \(\alpha \in \mathbb{C}^s \) and \(\beta \in \mathbb{C}^{sd} \), define \(\Gamma_X : \mathbb{C}^{s(d+1)} \to \mathbb{C}^m \) by

\[
\Gamma_X \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \Phi_X \alpha + \Phi_X^{(1)} \beta,
\]

where \(\Phi_X \alpha = \sum_j \alpha_j \varphi(x_j) \), \(\Phi_X^{(1)} \beta = \sum_{j=1}^s \beta_j^\top \nabla \varphi(x_j) \).

Consider

\[
\eta_V = \Phi^* \Gamma_X (\Gamma_X^* \Gamma_X)^{-1} \begin{pmatrix} \text{sign}(a) \\ 0_{sd} \end{pmatrix}
\]

- by definition \(\eta_V(x_j) = \text{sign}(a_j) \) and \(\nabla \eta_V(x_j) = 0 \).
What is natural candidate for a nondegenerate solution to $D_0(y)$?

In CS, for $\Phi \in \mathbb{C}^{m \times N}$, we need to find $v \in \text{Im}(\Phi^*)$ such that $|v_j| < 1$ for $j \notin T$ and $v_j = \text{sign}(a_j)$ for $j \in T$.

In the case $E[\Phi^*\Phi] = \text{Id}$, the Fuchs certificate is an appropriate choice:

$$v = \Phi^*\Phi_T(\Phi^*_T\Phi_T)^{-1}\text{sign}(a_T).$$

By definition, $v_T = \text{sign}(a_T)$.

Vanishing derivatives precertificate [Duval & Peyré ’15]

In our case, for $\alpha \in \mathbb{C}^{s}$ and $\beta \in \mathbb{C}^{sd}$, define $\Gamma_X : \mathbb{C}^{s(d+1)} \to \mathbb{C}^m$ by

$$\Gamma_X\left(\begin{array}{c} \alpha \\ \beta \end{array}\right) = \Phi_X\alpha + \Phi_X^{(1)}\beta,$$

where $\Phi_X\alpha = \sum_j \alpha_j \varphi(x_j)$, $\Phi_X^{(1)}\beta = \sum_{j=1}^s \beta_j^\top \nabla \varphi(x_j)$.

Consider

$$\eta_V = \Phi^*\Gamma_X(\Gamma_X^*\Gamma_X)^{-1}\left(\begin{array}{c} \text{sign}(a) \\ 0_{sd} \end{array}\right)$$

- by definition $\eta_V(x_j) = \text{sign}(a_j)$ and $\nabla \eta_V(x_j) = 0$.
- In fact, $\eta_V = \Phi^*p_V$ where

$$p_V = \text{argmin} \left\{ \|p\|_2 \; ; \; (\Phi^*p)(x_j) = \text{sign}(a_j), \nabla(\Phi^*p)(x_j) = 0 \right\}.$$
What is natural candidate for a nondegenerate solution to $D_0(y)$?

In CS, for $\Phi \in \mathbb{C}^{m \times N}$, we need to find $v \in \text{Im}(\Phi^*)$ such that $|v_j| < 1$ for $j \notin T$ and $v_j = \text{sign}(a_j)$ for $j \in T$.

In the case $\mathbb{E}[\Phi^*\Phi] = \text{Id}$, the Fuchs certificate is an appropriate choice:

$$v = \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} \text{sign}(a_T).$$

By definition, $v_T = \text{sign}(a_T)$.

Vanishing derivatives precertificate [Duval & Peyré ’15]

In our case, for $\alpha \in \mathbb{C}^s$ and $\beta \in \mathbb{C}^{sd}$, define $\Gamma_X : \mathbb{C}^{s(d+1)} \to \mathbb{C}^m$ by

$$\Gamma_X \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \Phi_X \alpha + \Phi_X^{(1)} \beta,$$

where $\Phi_X \alpha = \sum_j \alpha_j \varphi(x_j)$, $\Phi_X^{(1)} \beta = \sum_{j=1}^s \beta_j \top \nabla \varphi(x_j)$

Consider

$$\eta_V = \Phi^* \Gamma_X (\Gamma_X^* \Gamma_X)^{-1} \begin{pmatrix} \text{sign}(a) \\ 0_{sd} \end{pmatrix}$$

- by definition $\eta_V(x_j) = \text{sign}(a_j)$ and $\nabla \eta_V(x_j) = 0$.
- In fact, $\eta_V = \Phi^* p_V$ where
 $$p_V = \text{argmin} \left\{ \|p\|_2 ; (\Phi^* p)(x_j) = \text{sign}(a_j), \nabla (\Phi^* p)(x_j) = 0 \right\}.$$
- If $\|\eta_V\|_\infty \leq 1$, then we have $\eta_V = \eta_0$, and nondegeneracy guarantees support stability.
Key ideas of proof

We can also write

$$\eta_V(x) = \sum_{i=1}^{N} \alpha_i K(x_i, x) + \sum_{i=1}^{N} \beta_i K^{(10)}(x_i, x),$$

$$(\alpha) = D_{K,X}^{-1} \begin{pmatrix} \text{sign}(a) \\ 0_N \end{pmatrix}$$

with covariance kernel $K(x, x') = \langle \varphi(x), \varphi(x') \rangle$, $D_{K,X} \overset{\text{def.}}{=} \begin{pmatrix} M_0 & M_1 \\ M_1^T & M_2 \end{pmatrix}$,

where $M_0 = (K(x_i, x_j))_{i,j}$, $M_1 = (K^{(01)}(x_i, x_j))_{i,j}$, $M_2 = (K^{(11)}(x_i, x_j))_{i,j}$.

Key ideas of proof

We can also write

$$\eta_V(x) = \sum_{i=1}^{N} \alpha_i K(x_i, x) + \sum_{i=1}^{N} \beta_i K^{(10)}(x_i, x), \quad \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = D_{K,X}^{-1} \begin{pmatrix} \text{sign}(a) \\ 0_N \end{pmatrix}$$

with covariance kernel $K(x, x') = \langle \varphi(x), \varphi(x') \rangle$, $D_{K,X} \overset{\text{def.}}{=} \begin{pmatrix} M_0 & M_1 \\ M_1^T & M_2 \end{pmatrix}$,

where $M_0 = (K(x_i, x_j))_{i,j}$, $M_1 = (K^{(01)}(x_i, x_j))_{i,j}$, $M_2 = (K^{(11)}(x_i, x_j))_{i,j}$.

The idea of the proof is

- η_V associated to the limit kernel $K = \mathbb{E}[\hat{K}]$ is nondegenerate.
Key ideas of proof

We can also write

\[\eta_V(x) = \sum_{i=1}^{N} \alpha_i K(x_i, x) + \sum_{i=1}^{N} \beta_i K^{(10)}(x_i, x), \]

\[(\alpha) = D_{K,X}^{-1} \left(\begin{array}{c} \text{sign}(a) \\ 0_N \end{array} \right) \]

with covariance kernel \(K(x, x') = \langle \varphi(x), \varphi(x') \rangle \), \(D_{K,X} \) \(\text{def.} = \begin{pmatrix} M_0 & M_1 \\ M_1^T & M_2 \end{pmatrix} \),

where \(M_0 = (K(x_i, x_j))_{i,j} \), \(M_1 = (K^{(01)}(x_i, x_j))_{i,j} \), \(M_2 = (K^{(11)}(x_i, x_j))_{i,j} \).

The idea of the proof is

- \(\eta_V \) associated to the limit kernel \(K = \mathbb{E}[\hat{K}] \) is nondegenerate.
- We therefore simply need to show that \(\hat{\eta}_V \) associated to \(\hat{K} \) is close to \(\eta_V \):
 - On \(\mathcal{X}^\text{far} \), \(\hat{\eta}_V \approx \eta_V \) is bounded away from 1 in absolute value.
 - On \(\mathcal{X}^\text{near} \), \(\text{sign}(a_j) \nabla^2 \hat{\eta}_V \approx \text{sign}(a_j) \nabla^2 \eta_V \) is negative definite.
Key ideas of proof

We can also write

$$\eta_{V}(x) = \sum_{i=1}^{N} \alpha_i K(x_i, x) + \sum_{i=1}^{N} \beta_i K^{(10)}(x_i, x),$$

with covariance kernel $K(x, x') = \langle \varphi(x), \varphi(x') \rangle$, $D_{K, X} \overset{\text{def.}}{=} \begin{pmatrix} M_0 & M_1 \\ M_1^T & M_2 \end{pmatrix}$,

where

$M_0 = (K(x_i, x_j))_{i,j}$, $M_1 = (K^{(01)}(x_i, x_j))_{i,j}$, $M_2 = (K^{(11)}(x_i, x_j))_{i,j}$.

The idea of the proof is

- η_V associated to the limit kernel $K = \mathbb{E}[^\hat{K}]$ is nondegenerate.

- We therefore simply need to show that $\hat{\eta}_V$ associated to \hat{K} is close to η_V:
 - On X_{far}, $\hat{\eta}_V \approx \eta_V$ is bounded away from 1 in absolute value.
 - On X_{near}, $\text{sign}(a_j) \nabla^2 \hat{\eta}_V \approx \text{sign}(a_j) \nabla^2 \eta_V$ is negative definite.

- Our proof still requires random signs and is a direct extension of the work of Tang et al (to the higher dimensional and general operator setting), key difference is incorporation of the Fisher metric.
Comment on our $s^{1.5}$ bound

To explain the random signs requirement, consider the Fuchs certificate in the finite dimensional case,

$$v = \Phi^* \Phi_T (\Phi^*_T \Phi_T)^{-1} \text{sign}(a_T) = (\langle \text{sign}(a_T), u_j \rangle)_{j=1}^N$$

where $u_j = (\Phi^*_T \Phi_T)^{-1} \Phi^*_T \Phi \{j\}$, and we need to show $|v_j| < 1$ for $j \not\in T$.
Comment on our $s^{1.5}$ bound

To explain the random signs requirement, consider the Fuchs certificate in the finite dimensional case,

$$v = \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} \text{sign}(a_T) = ((\text{sign}(a_T), u_j))_{j=1}^N$$

where $u_j = (\Phi_T^* \Phi_T)^{-1} \Phi_T^* \Phi \{j\}$, and we need to show $|v_j| < 1$ for $j \not\in T$:

- Naively, $|v_j| \leq \sqrt{s} \|u_j\|_2$, so we need for $j \not\in T$, $\|\Phi_T^* \Phi \{j\}\|_2 \lesssim \frac{1}{\sqrt{s}}$ which forces $m \gtrsim s^2$ measurements.
Comment on our $s^{1.5}$ bound

To explain the random signs requirement, consider the Fuchs certificate in the finite dimensional case,

$$v = \Phi^* \Phi_T (\Phi^*_T \Phi_T)^{-1} \text{sign}(a_T) = (\langle \text{sign}(a_T), u_j \rangle)_{j=1}^N$$

where $u_j = (\Phi^*_T \Phi_T)^{-1} \Phi^*_T \Phi \{j\}$, and we need to show $|v_j| < 1$ for $j \not\in T$:

- Naively, $|v_j| \leq \sqrt{s} \|u_j\|_2$, so we need for $j \not\in T$, $\|\Phi^*_T \Phi \{j\}\|_2 \lesssim \frac{1}{\sqrt{s}}$ which forces $m \gtrsim s^2$ measurements.

- If $\text{sign}(a_T)$ is made of random signs, then by Hoeffding’s inequality, with high probability, $|v_j| = |\langle u_j, \text{sign}(a_T) \rangle| \lesssim \|u_j\|_2$ which yields $m \gtrsim s$ (up to log).
Comment on our $s^{1.5}$ bound

To explain the random signs requirement, consider the Fuchs certificate in the finite dimensional case,

$$v = \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} \text{sign}(a_T) = (\langle \text{sign}(a_T), u_j \rangle)_{j=1}^N$$

where $u_j = (\Phi_T^* \Phi_T)^{-1} \Phi_T^* \Phi \{j\}$, and we need to show $|v_j| < 1$ for $j \not\in T$:

- Naively, $|v_j| \leq \sqrt{s} \|u_j\|_2$, so we need for $j \not\in T$, $\|\Phi_T^* \Phi \{j\}\|_2 \lesssim \frac{1}{\sqrt{s}}$ which forces $m \gtrsim s^2$ measurements.

- If $\text{sign}(a_T)$ is made of random signs, then by Hoeffding’s inequality, with high probability, $|v_j| = |\langle u_j, \text{sign}(a_T) \rangle| \lesssim \|u_j\|_2$ which yields $m \gtrsim s$ (up to log).

- But we can also write

$$v_j = \langle ((\Phi_T^* \Phi_T)^{-1} - \text{Id}) \Phi_T^* \Phi \{j\}, \text{sign}(a_T) \rangle + \langle \Phi_T^* \Phi \{j\}, \text{sign}(a_T) \rangle$$

So, we simply need to ensure that $\|\Phi_T^* \Phi T - \text{Id}_T\|_{2 \to 2} \lesssim s^{-1/4}$ and $\|\Phi_T^* \Phi \{j\}\|_2 \lesssim s^{-1/4}$ which is true w.h.p. when $m \gtrsim s^{1.5}$ (up to log factor).
Outline

1. Compressed sensing off-the-grid
2. The Fisher metric and the minimum separation condition
3. Support stability for the subsampled problem
4. Ideas behind the proofs – Dual certificates
5. Removal of random signs assumption
Ideas from (finite dimensional) compressed sensing

Instead of requiring that $v_j = \text{sign}(a_j)$, it is enough that this holds approximately.
Ideas from (finite dimensional) compressed sensing

Instead of requiring that \(v_j = \text{sign}(a_j) \), it is enough that this holds approximately.

Theorem (Gross (2011); Candès and Plan (2011))

Let \(T \) index the largest \(s \) entries of \(|a| \). Suppose that there exists \(v = \Phi^* p \) such that

\[
\|v_T - \text{sign}(a_T)\|_2 \leq \frac{1}{4} \quad \text{and} \quad \|v_{T^c}\|_\infty \leq \frac{1}{4}
\]

and

\[
\| (\Phi^* \Phi_T)^{-1} \|_{2 \rightarrow 2} \leq 2 \quad \text{and} \quad \max_{i \in T^c} \| \Phi^* \Phi \{i\} \|_2 \leq 1,
\]

then one can guarantee that \(\| \hat{a} - a \|_2 \lesssim \|p\|_2 \delta + \sigma_1(a)_s \) provided that \(\lambda \sim \delta \).
Alternative proof: \(\exists \) inexact certificate \(\implies \exists \) dual certificate

Theorem (Gross (2011); Candès and Plan (2011))

Let \(T \) index the largest \(s \) entries of \(|a| \). Suppose that there exists \(v = \Phi^*p \) such that

\[
\|v_T - \text{sign}(a_T)\|_2 \leq \frac{1}{4} \quad \text{and} \quad \|v_T^c\|_\infty \leq \frac{1}{4}
\]

and

\[
\| \Phi_T^* \Phi_T \|^{-1}_{2\rightarrow2} \leq 2 \quad \text{and} \quad \max_{i \in T^c} \| \Phi_T^* \Phi \{i\} \|_2 \leq 1,
\]

then one can guarantee that \(\|\hat{a} - a\|_2 \lesssim (1 + \|p\|_2)\delta + \sigma_1(x^0)_s \) provided that \(\lambda \sim \delta / \|p\| \).

Proof:

1. Define \(u \overset{\text{def.}}{=} v + \tilde{v} \) where \(\tilde{v} \overset{\text{def.}}{=} \Phi^* \Phi_T (\Phi_T^* \Phi_T)^{-1} e \) and \(e = \text{sign}(a_T) - v_T \).
2. By definition, \(u_T = v_T + e_T = \text{sign}(a_T) \).
3. Note that

\[
\|\tilde{v}_T^c\|_\infty \leq \|\Phi_T^* \Phi_T\|_{2\rightarrow\infty} \left\| (\Phi_T^* \Phi_T)^{-1} \right\|_{2\rightarrow2} \|e\|_2 \leq \frac{1}{2},
\]

so \(\|u_T^c\|_\infty \leq \|v_T^c\|_\infty + \|\tilde{v}_T^c\|_\infty \leq \frac{3}{4} \).

Key steps of our proof

- Apply the golfing scheme [Gross ’09, Candès & Plan ’11] to construct \(\tilde{\eta} \in \text{Im}(\Phi^*) \) which is approximately nondegenerate on a finite grid:
 - The vector \(V = (\tilde{\eta}(x_j), D_1[\tilde{\eta}](x_j))_{j=1}^s \) satisfies
 \[\| V - (\text{sign}(a) 0_{sd}) \| \leq \delta, \]
 - For all \(x \in \mathcal{X}_{\text{grid},j} \), \(\text{sign}(a_j) \cdot D_2[\tilde{\eta}](x) < -\varepsilon_2 \).
 - For all \(x \in \mathcal{X}_{\text{grid}}^{\text{far}} \), \(|\tilde{\eta}(x)| < 1 - \varepsilon_0 \).

Show that provided that grid is sufficiently dense, this holds on the entire domain \(\mathcal{X} \) (depends on \(L_1 \) and \(L_3 \)). Add a small perturbation to \(\tilde{\eta} \) to obtain a true certificate. We still construct a dual certificate, but it is not of minimal norm.
Key steps of our proof

- Apply the golfing scheme [Gross '09, Candès & Plan '11] to construct \(\tilde{\eta} \in \text{Im}(\Phi^*) \) which is approximately nondegenerate on a finite grid:
 - The vector \(V = (\tilde{\eta}(x_j), D_1[\tilde{\eta}](x_j))_{j=1}^s \) satisfies \(\|V - (\text{sign}(a)\ 0_{sd})\| \leq \delta \),
 - For all \(x \in X \) near grid, \(\text{sign}(a_j) \cdot D_2[\tilde{\eta}](x) \prec -\varepsilon_2 \).
 - For all \(x \in X \) far grid, \(|\tilde{\eta}(x)| < 1 - \varepsilon_0 \).

- Show that provided that grid is sufficiently dense, this holds on the entire domain \(X \) (depends on \(L_1 \) and \(L_3 \)).
Key steps of our proof

- Apply the golfing scheme [Gross ’09, Candès & Plan ’11] to construct $\tilde{\eta} \in \text{Im}(\Phi^*)$ which is approximately nondegenerate on a finite grid:
 - The vector $V = (\tilde{\eta}(x_j), D_1[\tilde{\eta}](x_j))_{j=1}^s$ satisfies $\|V - \text{sign}(a)_{0_{sd}}\| \leq \delta$,
 - For all $x \in X_{\text{grid,near}}$, $\text{sign}(a_j) \cdot D_2[\tilde{\eta}](x) \prec -\varepsilon_2$.
 - For all $x \in X_{\text{grid,far}}$, $|\tilde{\eta}(x)| < 1 - \varepsilon_0$.

- Show that provided that grid is sufficiently dense, this holds on the entire domain X (depends on L_1 and L_3).

- Add a small perturbation to $\tilde{\eta}$ to obtain a true certificate.
Key steps of our proof

- Apply the golfing scheme [Gross ’09, Candès & Plan ’11] to construct $\tilde{\eta} \in \text{Im}(\Phi^*)$ which is approximately nondegenerate on a finite grid:
 - The vector $V = (\tilde{\eta}(x_j), D_1[\tilde{\eta}](x_j))_{j=1}^s$ satisfies $\|V - (\text{sign}(a)^0_{sd})\| \leq \delta$,
 - For all $x \in X_{\text{grid},j}$, $\text{sign}(a_j) \cdot D_2[\tilde{\eta}](x) \prec -\varepsilon_2$.
 - For all $x \in X_{\text{grid}}^\text{far}$, $|\tilde{\eta}(x)| < 1 - \varepsilon_0$.
- Show that provided that grid is sufficiently dense, this holds on the entire domain X (depends on L_1 and L_3).
- Add a small perturbation to $\tilde{\eta}$ to obtain a true certificate.

We still construct a dual certificate, but it is not of minimal norm.
The subsampled setting

Assumption 1

- K is admissible, $\mu_0 = \sum_{j=1}^{s} a_j \delta_{x_j}$ with $\min_{j \neq k} d_{H}(x_j, x_k) \geq \Delta$ and $s \leq s_{\text{max}}$.
- \mathcal{X} is a compact domain with $R_{\mathcal{X}} \overset{\text{def.}}{=} \sup_{x, x' \in \mathcal{X}} d_{H}(x, x')$.

Let $L_r(\omega) \overset{\text{def.}}{=} \sup_{x \in \mathcal{X}} \|D_r[\varphi_{\omega}](x)\|$ and let F_r be such that $P_{\omega}(L_r(\omega) > t) \leq F_r(t)$.

Assumption 2

For $\rho > 0$ (probability of failure) choose $m \in \mathbb{N}$ (number of measurements), and $\{\bar{L}_i\}_{i=0}^{3}$ such that

$$\sum_{j=0}^{3} F_j(\bar{L}_j) \leq \frac{\rho}{m} \quad \text{and} \quad \sum_{i=0}^{3} F_i(\bar{L}_i) + 2 \int_{\bar{L}_j}^{\infty} tF_j(t)dt \leq \frac{\varepsilon}{m}.$$

and $m \gtrsim C \cdot s \cdot (\log^2(s) + \log(N^d))$ where

$$N \overset{\text{def.}}{=} \frac{1}{\varepsilon} R_{\mathcal{X}} d\sqrt{s} \quad \text{and} \quad C \overset{\text{def.}}{=} \frac{1}{\varepsilon^2} \left(\frac{\log(L_2/\varepsilon \rho)}{\log(s)} + 1 \right) \left(L_1^2 B + L_2^2 \right),$$

$$B = B_{00} + B_{02} + B_{10} + B_{12}, \quad \varepsilon = \min\{\varepsilon_0, \varepsilon_2\}, \quad L_r = \max_{i \leq r} \bar{L}_i.$$
Stability without the random signs assumption

Theorem

Let

\[X_{\text{near}} \overset{\text{def.}}{=} \{ x \in X ; d_H(x, x_j) \leq r_{\text{near}} \} \quad \text{and} \quad X_{\text{far}} \overset{\text{def.}}{=} X \setminus \bigcup_{j=1}^{s} X_{\text{near}}. \]

Suppose that \(\|w\| \leq \delta \) and \(\lambda \sim \delta/\sqrt{s} \) (ignoring log factors), then any solution \(\hat{\mu} \) to \(P_{\lambda}(y) \) is approximately \(s \)-sparse: by defining the “projection” of \(|\hat{\mu}| \) onto \(X \overset{\text{def.}}{=} \{ x_j \} \) by

\[P_X(|\hat{\mu}|) \overset{\text{def.}}{=} \sum_{j=1}^{s} |\hat{\mu}| (X_{\text{near}}) \delta x_j \]

we have

\[T^2_H(|\hat{\mu}|, P_X(|\hat{\mu}|)) \lesssim \frac{\delta \sqrt{s}}{\varepsilon}. \]

where \(T^2_H \overset{\text{def.}}{=} \inf_{\mu, \nu} W^2_H(\hat{\mu}, \hat{\nu}) + |\mu - \hat{\mu}| (X) + |\nu - \hat{\nu}| (X). \)
Stability without the random signs assumption

Theorem

Let

\[\mathcal{X}_{j,\text{near}} \overset{\text{def.}}{=} \{ x \in \mathcal{X} ; d_{H}(x, x_j) \leq r_{\text{near}} \} \quad \text{and} \quad \mathcal{X}_{j,\text{far}} \overset{\text{def.}}{=} \mathcal{X} \setminus \bigcup_{j=1}^{s} \mathcal{X}_{j,\text{near}}. \]

(5.1)

Suppose that \(\|w\| \leq \delta \) and \(\lambda \sim \delta / \sqrt{s} \) (ignoring log factors), then any solution \(\hat{\mu} \) to \(P_{\lambda}(y) \) is approximately \(s \)-sparse: by defining the “projection” of \(\hat{\mu} \) onto \(\mathcal{X} \overset{\text{def.}}{=} \{ x_j \} \) by

\[
P_{X}(\|\hat{\mu}\|) \overset{\text{def.}}{=} \sum_{j=1}^{s} |\hat{\mu}|(\mathcal{X}_{j,\text{near}}) \delta_{x_j} \quad \text{we have}
\]

\[
\mathcal{T}_{H}^{2}(\|\hat{\mu}\|, P_{X}(\|\hat{\mu}\|)) \lesssim \frac{\delta \sqrt{s}}{\epsilon}.
\]

where \(\mathcal{T}_{H}^{2} \overset{\text{def.}}{=} \inf_{\mu, \nu} W_{H}^{2}(\hat{\mu}, \hat{\nu}) + |\mu - \hat{\mu}|(\mathcal{X}) + |\nu - \hat{\nu}|(\mathcal{X}) \).

Moreover, we have

\[
\sum_{j} |a_j - \hat{\mu}(\mathcal{X}_{j,\text{near}})|^2 \lesssim \frac{\|L\|_{1}}{\epsilon} (1 + |\mu_0|(\mathcal{X})) (\delta \sqrt{s})
\]
Stability without the random signs assumption

Theorem

Let

\[
X^{\text{near}} \overset{\text{def.}}{=} \{ x \in X \mid d_H(x, x_j) \leq r_{\text{near}} \} \quad \text{and} \quad X^{\text{far}} \overset{\text{def.}}{=} X \setminus \bigcup_{j=1}^{s} X^{\text{near}}. \tag{5.1}
\]

Suppose \(\mu_0 = \sum_{j=1}^{s} a_j \delta_{x_j} + \nu_0 \) where \(\nu_0 \perp \sum_{j} a_j \delta_{x_j} \).

Suppose that \(\|w\| \leq \delta \) and \(\lambda \sim \delta/\sqrt{s} \) (ignoring log factors), then any solution \(\hat{\mu} \) to \(P_\lambda(y) \) is approximately \(s \)-sparse: by defining the “projection” of \(\hat{\mu} \) onto \(X \overset{\text{def.}}{=} \{ x_j \} \) by

\[
P_X(\hat{\mu}) \overset{\text{def.}}{=} \sum_{j=1}^{s} |\hat{\mu}| (X^{\text{near}}) \delta_{x_j}
\]

we have

\[
T_H^2(\hat{\mu}, P_X(\hat{\mu})) \lesssim \frac{\delta \sqrt{s + |\nu_0| (X)}}{\varepsilon}.
\]

where \(T_H^2 \overset{\text{def.}}{=} \inf_{\mu, \nu} W^2_H(\mu, \nu) + |\mu - \hat{\mu}| (X) + |\nu - \hat{\nu}| (X) \).
Summary

Papers:
- A Dual Certificates Analysis of Compressive Off-the-Grid Recovery, arXiv 1802.08464

Summary: Extended existing results to general measurement operators and the multivariate setting.
- Introduction of the Fisher metric, which offers a natural way of imposing the separation condition and allows a unified way of approaching nontranslational invariant problems.
- Quantitative support stability under a random signs assumption.
- Removal of the random signs condition (with support concentration guarantees).

Outlook:
- Algorithmic implications of the Fisher metric/natural gradient?
- Our results are optimal wrt s, but what about d?
- How should we quantify noise stability in general?
Summary

Papers:
- A Dual Certificates Analysis of Compressive Off-the-Grid Recovery, arXiv 1802.08464

Summary: Extended existing results to general measurement operators and the multivariate setting.
- Introduction of the Fisher metric, which offers a natural way of imposing the separation condition and allows a unified way of approaching nontranslational invariant problems.
- Quantitative support stability under a random signs assumption.
- Removal of the random signs condition (with support concentration guarantees).

Outlook:
- Algorithmic implications of the Fisher metric/natural gradient?
- Our results are optimal wrt s, but what about d?
- How should we quantify noise stability in general?

Thanks for listening!