Stochastic approximation-based algorithms, when the Monte Carlo bias does not vanish

Gersende Fort

Institut de Mathématiques de Toulouse
CNRS
Toulouse, France
Stochastic approximation-based algorithms, when the Monte Carlo bias does not vanish

Based on joint works with

- Yves Atchadé (Univ. Michigan, USA)
- Eric Moulines (Ecole Polytechnique, France)
- Edouard Ollier (ENS Lyon, France)
- Laurent Risser (IMT, France).
- Adeline Samson (Univ. Grenoble Alpes, France).

and published in the papers (or works in progress)

- On Perturbed Proximal-Gradient algorithms (JMLR, 2017)
- Stochastic Proximal Gradient Algorithms for Penalized Mixed Models (Statistics and Computing, 2018)
- Stochastic FISTA algorithms : so fast ? (IEEE workshop SSP, 2018)
This talk: answer a computationnel issue

- Find

\[\theta^* \in \arg\min_{\theta \in \Theta} (f(\theta) + g(\theta)) \]

where

- \(\Theta \subseteq \mathbb{R}^d \) (extension to any Hilbert possible; not done)
- \(g \) is not smooth, but is convex and proper, lower semi-continuous ("prox" operator)
- \(f \) is not explicit / is untractable, \(\nabla f \) exists but is not explicit / is untractable
 When proving results: \(f \) is convex and \(\nabla f \) is Lipschitz

- In this talk: numerical tools to solve (1) based on first order methods; convergence analysis.
Outline

The topic

Applications in Statistical Learning

A numerical solution: proximal-gradient based methods

Case of Monte Carlo approximation

Perturbed Proximal-Gradient algorithms and EM-based algorithms
Example 1: large scale learning

Minimization of a composite function

- \(g = 0 \) or \(g \) is a penalty / regularization / constraint condition on the parameter \(\theta \)

- \(f \) is an (empirical) loss function associated to \(N \) examples

\[
f(\theta) = \frac{1}{N} \sum_{i=1}^{N} f_i(\theta)
\]

when \(N \) is large

For any \(i \), \(f_i \) and \(\nabla f_i \) can be evaluated at any point \(\theta \) but the computation of the sum over \(N \) terms is too expensive.

Rmk that \(\nabla f(\theta) = \mathbb{E} [\nabla f_I(\theta)] \) where \(I \) r.v. uniform on \(\{1, \ldots, N\} \).
Example 2: binary graphical model

Minimization of a composite function

- Observation $y \in \{-1, 1\}^p$ (a binary vector of length p, collecting the binary values of p nodes), with statistical model

$$
\pi_\theta(y) \propto \exp \left(\sum_{i=1}^{p} \theta_i y_i + \sum_{i=1}^{p} \sum_{j=i+1}^{p} \theta_{ij} y_i y_j \right)
$$

with an untractable normalizing constant $\exp(\theta)$. θ collects the "weights".

- f is the negative log-likelihood of N indep. observations

$$
f(\theta) = - \log Z_\theta + \sum_{i=1}^{p} \theta_i \left(N^{-1} \sum_{n=1}^{N} Y_i^{(n)} \right) + \sum_{i=1}^{p} \sum_{j=i+1}^{p} \theta_{ij} \left(N^{-1} \sum_{n=1}^{N} \mathbb{I}_{Y_i^{(n)} = Y_j^{(n)}} \right)
$$

In this model $\nabla f(\theta) = \mathbb{E}_\theta [H(X, \theta)]$ where $X \sim \pi_\theta$

- $g = 0$ or g is a penalty / regularization / constraint condition on the parameter θ (the number of observations $N << p^2/2$)
Example 3: Parametric inference in Latent variable models

Minimization of a composite function

- g is a penalty function (e.g. for sparsity condition on θ)
- f is the negative log-likelihood of the N observations

$$f(\theta) = -\log \int_X h(x, Y_{1:N}; \theta) \nu(dx)$$

and the gradient is of the form

$$\nabla f(\theta) = \int_X \partial_\theta \log h(x, Y_{1:N}; \theta) \frac{h(x, Y_{1:N}; \theta)}{\int_X h(u, Y_{1:N}; \theta) \nu(du)} \nu(dx)$$

i.e. an expectation w.r.t. the a posteriori distribution (*known up to a normalizing constant in these models*)
Outline

The topic

Applications in Statistical Learning

A numerical solution: proximal-gradient based methods

Case of Monte Carlo approximation

Perturbed Proximal-Gradient algorithms and EM-based algorithms
Numerical solution: the ingredient

\[\arg\min_{\theta \in \Theta} F(\theta) \quad \text{with} \quad F(\theta) = f(\theta) + g(\theta) \]

\[\text{smooth} + \text{non smooth} \]

The Proximal Gradient algorithm

Given a stepsize sequence \(\{\gamma_n, n \geq 0\} \), iterative algorithm:

\[\theta_{n+1} = \text{Prox}_{\gamma_{n+1}, g}(\theta_n - \gamma_{n+1} \nabla f(\theta_n)) \]

where

\[\text{Prox}_{\gamma, g}(\tau) \overset{\text{def}}{=} \arg\min_{\theta \in \Theta} \left(g(\theta) + \frac{1}{2\gamma} \|\theta - \tau\|^2 \right) \]

Proximal map: Moreau(1962)

Proximal Gradient algorithm: Beck-Teboulle(2010); Combettes-Pesquet(2011); Parikh-Boyd(2013)

- A generalization of the gradient algorithm to a composite objective fct.
- A Majorize-Minimize algorithm from a quadratic majorization of \(f \) (since Lipschitz gradient) which produces a sequence \(\{\theta_n, n \geq 0\} \) such that

\[F(\theta_{n+1}) \leq F(\theta_n). \]

In our frameworks, \(\nabla f(\theta) \) is not available.
Numerical solution: a perturbed proximal-gradient algorithm

The Perturbed Proximal Gradient algorithm

Given a stepsize sequence \(\{\gamma_n, n \geq 0\} \), iterative algorithm:

\[
\theta_{n+1} = \text{Prox}_{\gamma_{n+1}g} \left(\theta_n - \gamma_{n+1}H_{n+1} \right)
\]

where \(H_{n+1} \) is an approximation of \(\nabla f(\theta_n) \).

Useful for the proof: observe

\[
\theta_{n+1} = \text{Prox}_{\gamma_{n+1}g} \left(\theta_n - \gamma_{n+1} \nabla f(\theta_n) - \gamma_{n+1} (H_{n+1} - \nabla f(\theta_n)) \right)_{\text{perturbation}}
\]
Convergence result: the assumptions (1/2)

\[
\text{argmin}_{\theta \in \Theta} F(\theta) \quad \text{with} \quad F(\theta) = f(\theta) + g(\theta)
\]

where

- the function \(g: \mathbb{R}^d \to [0, \infty] \) is convex, non smooth, not identically equal to \(+\infty\), and lower semi-continuous

- the function \(f: \mathbb{R}^d \to \mathbb{R} \) is a smooth convex function
 i.e. \(f \) is continuously differentiable and there exists \(L > 0 \) such that
 \[
 \|\nabla f(\theta) - \nabla f(\theta')\| \leq L \|\theta - \theta'\| \quad \forall \theta, \theta' \in \mathbb{R}^d
 \]

- \(\Theta \subseteq \mathbb{R}^d \) is the domain of \(g \): \(\Theta = \{ \theta \in \mathbb{R}^d : g(\theta) < \infty \} \).

- The set \(\text{argmin}_{\Theta} F \) is a non-empty subset of \(\Theta \).
Convergence results (2/2)

\[\theta_{n+1} = \text{Prox}_{\gamma_{n+1}, g} (\theta_n - \gamma_{n+1} H_{n+1}) \quad \text{with} \quad H_{n+1} \approx \nabla f(\theta_n) \]

Set: \[L = \arg\min_{\Theta} (f + g) \]
\[\eta_{n+1} = H_{n+1} - \nabla f(\theta_n) \]

Theorem (Atchadé, F., Moulines (2017))

Assume

- \(g \) convex, lower semi-continuous; \(f \) convex, \(C^1 \) and its gradient is Lipschitz with constant \(L \); \(L \) is non empty.
- \(\sum_n \gamma_n = +\infty \) and \(\gamma_n \in (0, 1/L] \).
- Convergence of the series

\[\sum_n \gamma_{n+1}^2 \|\eta_{n+1}\|^2, \quad \sum_n \gamma_{n+1} \eta_{n+1}, \quad \sum_n \gamma_{n+1} \langle T_n, \eta_{n+1} \rangle \]

where \(T_n = \text{Prox}_{\gamma_{n+1}, g} (\theta_n - \gamma_{n+1} \nabla f(\theta_n)) \).

Then there exists \(\theta_\star \in L \) such that \(\lim_n \theta_n = \theta_\star \).
Sketch of proof

Its proof relies on

1. a deterministic Lyapunov inequality

\[\| \theta_{n+1} - \theta^* \|^2 \leq \| \theta_n - \theta^* \|^2 - 2\gamma_{n+1} (F(\theta_{n+1}) - \min F) - 2\gamma_{n+1} \langle T_n - \theta^*, \eta_{n+1} \rangle + 2\gamma_{n+1}^2 \| \eta_{n+1} \|^2 \]

 non-negative

 signed noise

2. (an extension of) the Robbins-Siegmund lemma

Let \(\{v_n, n \geq 0\} \) and \(\{\chi_n, n \geq 0\} \) be non-negative sequences and \(\{\xi_n, n \geq 0\} \) be such that \(\sum_n \xi_n \) exists. If for any \(n \geq 0 \),

\[v_{n+1} \leq v_n - \chi_{n+1} + \xi_{n+1} \]

then \(\sum_n \chi_n < \infty \) and \(\lim_n v_n \) exists.

Rmk: deterministic lemma, signed noise.
What about Nesterov-based acceleration? (FISTA)

Let \(\{t_n, n \geq 0\} \) be a positive sequence s.t.

\[
\gamma_{n+1} t_n (t_n - 1) \leq \gamma_n t_{n-1}^2
\]

Nesterov acceleration of the Proximal Gradient algorithm

\[
\begin{align*}
\theta_{n+1} &= \text{Prox}_{\gamma_{n+1}, g} \left(\tau_n - \gamma_{n+1} \nabla f(\tau_n) \right) \\
\tau_{n+1} &= \theta_{n+1} + \frac{t_n - 1}{t_{n+1}} (\theta_{n+1} - \theta_n)
\end{align*}
\]

(deterministic) Proximal-gradient

\[F(\theta_n) - \min F = O \left(\frac{1}{n} \right) \]

(deterministic) Accelerated Proximal-gradient

\[F(\theta_n) - \min F = O \left(\frac{1}{n^2} \right) \]
Convergence results for perturbed FISTA

When $\nabla f(\tau_n)$ is replaced with H_{n+1}

\[
H_{n+1} \approx \nabla f(\tau_n)
\]

\[
\theta_{n+1} = \text{Prox}_{\gamma_{n+1}, g}(\tau_n - \gamma_{n+1} H_{n+1})
\]

\[
\tau_{n+1} = \theta_{n+1} + \frac{t_n - 1}{t_{n+1}} (\theta_{n+1} - \theta_n)
\]

Under conditions on γ_n, t_n and on the perturbation $\tilde{\eta}_{n+1} \overset{\text{def}}{=} H_{n+1} - \nabla f(\tau_n)$

\[
\sum_n \gamma_{n+1} t_n \langle z_n - \theta^*, \tilde{\eta}_{n+1} \rangle < \infty
\]

we have (F., Risser, Atchadé, Moulines; 2018)

- $\lim_n \gamma_{n+1} t_n^2 F(\theta_n)$ exists
- Explicit control of this quantity.
Outline

The topic

Applications in Statistical Learning

A numerical solution: proximal-gradient based methods

Case of Monte Carlo approximation

Perturbed Proximal-Gradient algorithms and EM-based algorithms
Monte Carlo approximation

- We consider the case when

\[\nabla f(\theta) = \int_X H(x, \theta) \, \pi_\theta(dx) \]

and the approximation relies on a Monte Carlo approximation

\[H_{n+1} \overset{\text{def}}{=} \frac{1}{m_{n+1}} \sum_{i=1}^{m_{n+1}} H(X_{j,n}; \theta_n) \]

- In our motivating examples 2 and 3
 - \(\pi_\theta \) is known up to a normalization constant
 - exact sampling from \(\pi_\theta \) is not possible
 - MCMC techniques can always be used: at iteration \(n \), the points \(X_{1,n}, X_{2,n}, \cdots \) are from a Markov chain with invariant distribution \(\pi_{\theta_n} \).
Convergence results on Markov chains F., Moulines (2003)

- The approximation is biased

$$\mathbb{E} \left[\frac{1}{m_{n+1}} \sum_{i=1}^{m_{n+1}} H(X_{i,n}, \theta) | \mathcal{F}_n \right] \neq \int H(x, \theta) \pi_{\theta_n}(dx)$$

- The bias may vanish when the number of points tends to infinity

$$\left| \mathbb{E} \left[\frac{1}{m_{n+1}} \sum_{i=1}^{m_{n+1}} H(X_{i,n}, \theta) | \mathcal{F}_n \right] - \int H(x, \theta) \pi_{\theta_n}(dx) \right| \leq \frac{C(\theta_n, X_{0,n})}{m_{n+1}}$$

$$\mathbb{E} \left[\left| \frac{1}{m_{n+1}} \sum_{i=1}^{m_{n+1}} H(X_{i,n}, \theta) - \int H(x, \theta) \pi_{\theta_n}(dx) \right|^p | \mathcal{F}_n \right] \leq \frac{\tilde{C}(\theta_n, X_{0,n})}{m_{n+1}^{p/2}}$$

- The control of this bias depends on the current value of the parameter θ_n

These results depend on the **ergodic properties** of the Markov chain: assumptions on the target density π_θ and on the transition kernel P_θ of the Markov chain are required. Assumptions of the form $\sup_\theta \sup_x |H(x, \theta)|/W(x) < \infty$ are also used in these bounds.
Impact of the bias (1/2)

let us check the condition "\(\sum_n \gamma_n \eta_n < \infty \) w.p.1":

\[
\sum_n \gamma_{n+1} \eta_{n+1} = \sum_n \gamma_{n+1} (H_{n+1} - \nabla f(\theta_n))
\]

\[\text{unbiased MC: null, biased MC: } O(1/m_n)\]

The most technical case: the biased case with constant batch size \(m_n = m \)
Stochastic approximation-based algorithms, when the Monte Carlo bias does not vanish

Impact of the bias (2/2) - case $m_n = m = 1$

- Let P_θ be the Markov transition kernel of the chain with inv. distribution π_θ.

- Solution \hat{H}_θ to the Poisson equation

$$H(x, \theta) - \int H(y, \theta) \pi_\theta(dy) = \hat{H}_\theta - P_\theta \hat{H}_\theta(x)$$

- This yields, by choosing $X_{0,n} = X_{1,n-1}$

$$H(X_{1,n}, \theta_n) - \int_X H(y, \theta_n) \pi_{\theta_n}(dy) = \hat{H}_{\theta_n}(X_1) - P_{\theta_n} \hat{H}_{\theta_n}(X_{1,n})$$

$$= \hat{H}_{\theta_n}(X_{1,n}) - P_{\theta_n} \hat{H}_{\theta_n}(X_{0,n}) + P_{\theta_n} \hat{H}_{\theta_n}(X_{0,n}) - P_{\theta_n} \hat{H}_{\theta_n}(X_{1,n})$$

$$= \hat{H}_{\theta_n}(X_{1,n}) - P_{\theta_n} \hat{H}_{\theta_n}(X_{0,n}) \quad \text{Martingale increment}$$

$$+ P_{\theta_n} \hat{H}_{\theta_n}(X_{1,n-1}) - P_{\theta_{n-1}} \hat{H}_{\theta_{n-1}}(X_{1,n-1}) \quad \text{Regularity in } \theta$$

$$+ P_{\theta_{n-1}} \hat{H}_{\theta_{n-1}}(X_{1,n-1}) - P_{\theta_n} \hat{H}_{\theta_n}(X_{1,n}) \quad \text{telescopic}$$
Strategy 1: vanishing bias $m_n \to \infty$ (1/2)

- For almost-sure convergence of $\{\theta_n, n \geq 0\}$

Conditions on the batch size m_n and the stepsize γ_n for the convergence

$$\sum_n \gamma_n = +\infty, \quad \sum_n \frac{\gamma_n^2}{m_n} < \infty; \quad \sum_n \frac{\gamma_n}{m_n} < \infty \text{ (biased case)}$$

Conditions on the Markov kernels: There exist $\lambda \in (0, 1)$, $b < \infty$, $p \geq 2$ and a measurable function $W : X \to [1, +\infty)$ such that

$$\sup_{\theta \in \Theta} |H_\theta|W < \infty, \quad \sup_{\theta \in \Theta} P_\theta W^p \leq \lambda W^p + b.$$

In addition, for any $\ell \in (0, p]$, there exist $C < \infty$ and $\rho \in (0, 1)$ such that for any $x \in X$,

$$\sup_{\theta \in \Theta} \|P_\theta^n(x, \cdot) - \pi_\theta\|_{W^\ell} \leq C\rho^n W^\ell(x). \quad (2)$$

Condition on Θ: Θ is bounded.

Constant step sizes $\gamma_n = \gamma$ are allowed as soon as $\sum_n m_n^{-1} < \infty$.
Strategy 1: vanishing bias $m_n \to \infty$ (2/2)

- For rates of convergence in L^q on the functional

$$\left\| F\left(\frac{1}{n} \sum_{k=1}^{n} \theta_k\right) - \min F \right\|_{L^q} \leq \left\| \frac{1}{n} \sum_{k=1}^{n} F(\theta_k) - \min F \right\|_{L^q} \leq u_n$$

$u_n = O(\ln n/n)$

with increasing batch size and constant stepsize

$$\gamma_n = \gamma \star \quad m_n \propto n.$$

Rate with $O(n^2)$ Monte Carlo samples!

After n iterations: the rate of the perturbed Proximal-Gradient is $O(1/n)$, using n^2 Monte Carlo simulations.

Given n Monte Carlo simulations: the rate is $O(1/\sqrt{n})$.
Strategy 2: **NON-vanishing bias** $m_n = m$. (1/2)

- "Stochastic Approximation" framework by Benveniste, Metivier, Priouret (1990)

- For almost-sure convergence of $\{\theta_n, n \geq 0\}$

Conditions on the stepsize γ_n for the convergence

Condition on the step size:

\[
\sum_n \gamma_n = +\infty \quad \sum_n \gamma_n^2 < \infty \quad \sum_n |\gamma_{n+1} - \gamma_n| < \infty
\]

Condition on the Markov chain: same as in the case "increasing batch size" and there exists a constant C such that for any $\theta, \theta' \in \Theta$

\[
|H_\theta - H_{\theta'}|_W + \sup_x \frac{||P_\theta(x, \cdot) - P_{\theta'}(x, \cdot)||_W}{W(x)} + \|\pi_\theta - \pi_{\theta'}\|_W \leq C \|\theta - \theta'\|
\]

Condition on the Prox:

\[
\sup_{\gamma \in (0, 1/L]} \sup_{\theta \in \Theta} \gamma^{-1} \|\text{Prox}_{\gamma, g}(\theta) - \theta\| < \infty.
\]

Condition on Θ: Θ is bounded.
Strategy 2: **NON**-vanishing bias $m_n = m$. (2/2)

- For rates of convergence in L^q on the functional

$$\left\| F \left(\frac{1}{n} \sum_{k=1}^{n} \theta_k \right) - \min F \right\|_{L^q} \leq \left\| \frac{1}{n} \sum_{k=1}^{n} F(\theta_k) - \min F \right\|_{L^q} \leq u_n$$

$u_n = O(1/\sqrt{n})$

with (slowly) decaying stepsize

$$\gamma_n = \frac{\gamma^*}{n^a}, a \in [1/2, 1] \quad m_n = m_*.$$

With averaging: optimal rate, even with slowly decaying stepsize $\gamma_n \sim 1/\sqrt{n}$.

After n iterations : the rate of the perturbed Proximal-Gradient is $O(1/\sqrt{n})$, using n Monte Carlo simulations.
What about Stochastic FISTA?

- **We prove** F., Risser, Atchadé, Moulines (2018)

\[
\lim_{n} n^2 F(\theta_n) < \infty \quad \text{a.s.} \quad \sup_n n^2 \mathbb{E} [F(\theta_n)] < \infty
\]

with

\[
t_n = O(n), \quad \gamma_n = \gamma \quad m_n = O(n^3)
\]

- After \(n \) Monte Carlo simulations:
 - the rate is \(O(1/\sqrt{n}) \)
 - the same rate as the (perturbed) Proximal-Gradient with an averaging strategy.
Outline

The topic

Applications in Statistical Learning

A numerical solution: proximal-gradient based methods

Case of Monte Carlo approximation

Perturbed Proximal-Gradient algorithms and EM-based algorithms
Latent variable models, curved exponential family

- One motivation was "penalized inference in latent variable models"

\[
\text{argmin}_\theta - \log \int_X h(x, \theta) \nu(dx) + g(\theta)
\]

- When curved exponential family

\[
h(x, \theta) = \exp(\phi(\theta) + \langle S(x), \psi(\theta) \rangle)
\]

- In that case, Proximal-Gradient algo gets into

\[
\theta_{n+1} = \text{Prox}_{\gamma_{n+1} g} \left(\theta_n - \gamma_{n+1} \{ \nabla \phi(\theta_n) + \Psi(\theta_n) \bar{S}(\theta_n) \} \right)
\]

where

\[
\bar{S}(\theta_n) = \int S(z) \pi_{\theta_n}(dz).
\]
EM and Gdt-Prox

- Expectation-Maximization: a famous algorithm to solve this optimization issue in these models
- It can be shown Ollier, F., Samson (2018) that the proximal-gradient algorithm is a (Generalized) EM algorithm under regularity conditions on ϕ, ψ, \bar{S}.
Stochastic EM and Stochastic Gdt-Prox

- Stochastic proximal-gradient algorithm
 \[\theta_{n+1} = \text{Prox}_{\gamma_{n+1}g} (\theta_n - \gamma_{n+1} \{ \nabla \phi(\theta_n) + \Psi(\theta_n)S_{n+1} \}) \]
 where
 \[S_{n+1} \approx \bar{S}(\theta_n) \]

- Strategy 1
 \[S_{n+1} = \frac{1}{m_{n+1}} \sum_{j=1}^{m_{n+1}} S(X_{j,n}) \]

- Strategy 2
 \[S_{n+1} = (1 - \delta_n)S_n + \frac{\delta_n}{m_{n+1}} \sum_{j=1}^{m_{n+1}} S(X_{j,n}) \]

- These two strategies correspond resp. to a (generalized) MCEM and a (generalized) SAEM.