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Linear Bandits



1. In round t, observe action set A, C RY.

2. The learner chooses A; € A; and receives X;, satisfying
]E[Xf|~’417 Ala coo aAtv Al’] - <At7 9*> = fe*(Af)

for some unknown 0...
3. Light-tailed noise:

X — <At70*> ="t NN(Ov 1)

Goal: Keep regret

R,=E

n
6,) — X
;a@%(a,> A

small.



Real-World setting

Typical setting: a user, represented by its feature vector u;, shows up and
we have a finite set of (correlated) actions (ay, ..., ax).

Some function ® joins these vectors pairwise to create a contextualized
action set:

Vie[K], ®(uai)=ai€ RY A= {at1, - aek )
No assumption is to be made on the joining function ¢ as the bandit
may take over the decision step from that contextualized action set.

So, it is equivalent to A; ~ M(IR9) some arbitrary distribution, or
Az, ..., A, fixed arbitrarily by the environment.



Toolbox of the optimist

Say, reward in round t is X;, action in round t is A, € RY:
Xt — <At7 0*> + nt )

We want to estimate 6,:regularized least-squares estimator:

t
B = Vit Y AX,
s=1

t
Vo = M, Ve=Vo+ Y AA]

s=1

Choice of confidence regions (ellipsoids) C;:

e, = {o eERY |0 — 0|, < Bt} .

where, for A positive definite, | x||i = x " Ax.




LinUCB

“Choose the best action in the best environment amongst the plausible
ones.”

Choose C; with suitable (5;): and let

A: = argmax max(a, §) .
acA 0€C:

Or, more concretely, for each action a € A, compute the "optimistic
index”

Ui(a) = gneaC)t((a,& .

Maximising a linear function over a convex closed set, the solution is
explicit:

A; = argmax Uy(a) = argmax(a, 0,) + /B¢ llally-1 -
a a =



Optimism in the Face of Uncertainty Principle

Regret: 11.00
Timestep: 19

Qeoeoe

True Mean
Approximated Mean
Arm Vectors
Chosen Arm



Regret Bound

Assumptions:

1. Bounded scalar mean reward: |(a,0.)| <1 for any a € UzA;.
2. Bounded actions: for any a € U Ay, ||al|, < L.

3. Honest confidence intervals: There exists a ¢ € (0,1) such that with
probability 1 — 4, for all t € [n], 6. € C; for some choice of (0¢)t<n.

Theorem (LinUCB Regret)

Let the conditions listed above hold. Then with probability 1 — § the
regret of LinUCB satisties

) d+ nl?
R, < \/8dn6,, log <:A”) .




Jensen's inequality shows that

n n

Ro=> (Af—An0):=) <

t=1 t=1

where Af = argmax,c 4,(a, 0x).

Let 6, be the vector that realizes the maximum over the ellipsoid:
0: € Ci s.t. (Ar,0;) = U(Ay).

From the definition of LinUCB,

(AL, 0:) < Ue(AY) < Ur(Ar) = (A, 04) -
Then,

re < (Ar,0: — 6.) < 1Al 16 = Oullv,, <2 [Aelly-1 V/Be -
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Elliptical Potential Lemma

So we now have a new upper bound,

R,=> r< nz r2<2 nﬁnZ(l AIAY-1)-
t=1 t=1
Lemma (Abbasi-Yadkori et al. (2011))

Let x1,..., % ERY, Ve = Vo + L xsx, t € [n], and L > max; ||x¢|,-
Then,

" det V, trace( Vo) + nL>
1 2 ) <2l <dl —_— .
Z ( A ||XtHVt711) = og (det VO) = og < ddetl/d(vo)

t=1
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Confidence Ellipsoids

Assumptions: ||0.] < S, and let (As)s, (ns)s be so that for any 1 < s < t, ns|Fs—1 ~ subG(1),
where Fs = 0(A1, M1, - -+ s As—1, Ns—1, As)

Fix & € (07 1) Let
Bey1 = VS + \/2 log (%) + log (det V,(,\))

<VAS + \/2 log (1) + log (’\‘“”’L ) ,

and

Cer1 = {9 eRY : |16 — O.)lv, 0 < 5t+1} -

Theorem
Ciy1 is a confidence set for 0, at level 1 —§:

]P’(Q* Gct+1) >1-96.

Proof : See Chapter 20 of Bandit Algorithms (www.banditalgs.com)
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e Abe and Long [4] introduced stochastic linear bandits into machine
learning literature.

e Auer [6] was the first to consider optimism for linear bandits (LinRel,
SupLinRel). Main restriction: |A;| < 4o0.

e Confidence ellipsoids: Dani et al. [8] (ConfidenceBally),
Rusmevichientong and Tsitsiklis [11] (Uncertainty Ellipsoid Policy),
Abbasi-Yadkori et al. [3] (OFUL).

e The name LinUCB comes from Chu et al. [7].

e Alternative routes:

e Explore then commit for action sets with smooth boundary.
Abbasi-Yadkori [1], Abbasi-Yadkori et al. [2], Rusmevichientong and
Tsitsiklis [11].

e Phased elimination

e Thompson sampling
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Theorem (LinUCB Regret)

Let the conditions listed above hold. Then with probability 1 — § the
regret of LinUCB satisfies

trace(Vp) + nl?

ddet? (V) ) = Oldvin).

R’,, < ,18dnB,log (

Linear bandits are an elegant model of the exploration-exploitation
dilemma when actions are correlated.

The main ingredients of the regret analysis are:

e bounding the instantaneous regret using the definition of optimism;
e a maximal concentration inequality holding for a randomized,
sequential design;

e the Elliptical Potential Lemma.
14



Real-World Setting: Delayed
Feedback




In a real-world application, rewards are delayed ...

At c .At C Rd
next step .
Agent |e-ccmoeee Environment
46 ’AtL dela :
D y Xy = fo(As) +me
t buffer
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In a real-world application, rewards are delayed ... and censored.

Environment

Xi = fo(As) +me

A € At C Rd
next step
Agent e S——
X ’AtL delay
Dy <m buffer
trash «Jif Dy >m
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Delayed Linear Bandits

Modified setting: at round ¢t > 1,
e receive contextualized action set A; = {ay,...,ax} and choose
action A; € Ay,
e two random variables are generated but not observed:
Xf ~ B(OTAL») and Dt i D(T),
e at t + D; the reward X; of action A; is disclosed ...
e ...unless D; > m : If the delay is too long, the reward is discarded.
New parameter: 0 < m < T is the cut-off time of the system. If the

delay is longer, the reward is never received. The delay distribution D(7)
characterizes the proportion of converting actions: 7, = p(D; < m).
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A new estimator

We now have :
t—1 t—1
V, = ZASAST by = ZASXS]I{DS < m}
s=1 s=1

where b, contains additional non-identically distributed samples:

t—m t—1
be=> AXI{D;<m}+ > AXI{D;<t-s}
s=1 s=t—m+1

" Conditionally biased” least squares estimator includes every received
feedback

Ab i

0; = V[ b

Baseline: use previous estimator but discard last m steps
09 = V1 b with  E[09|F,] ~ 7m0
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Confidence interval and the D-LinUCB policy

We remark that
~ o A
07 — im0 = 0, — 0.5, + 0.5, — im0
__ )b ndisc ndisc
=0, -0, + 0.5, — w0
—— —_———
finite bias same as before
For the new C;, we have new optimistic indices
A; = argmax macx<a, 0).

acA  0€C:

But now, the solution has an extra (vanishing) bias term

A, = argmax(a,80) + v/ all -1 + mlally
a - b=

D-LinUCB: Easy, straightforward, harmless modification of LinUCB, with

regret guarantees in the delayed feedback setting.
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Regret bound

Theorem (D-LinUCB Regret)

Under the same conditions as before, with Vo = Al, with probability
1 — 9 the regret of D-LinUCB satisfies

A _ trace(Vp) + nL? dm n
R, < 7.t |8dnB,log . + —log |1+~
J d det (Vp) (A=)t d(A—1)
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Simulations

We fix n = 3000 and generate geometric delays with E[D;] = 100. In a
real setting, this would correspond to an experiment that lasts 3h, with
average delays of 6 minutes.

Then, we let the cut off vary m € 250,500, 1000, i.e. waiting time of
15min, 30min and 1h, respectively.

0 1000 2000 3000

Figure 1: Comparison of the simulated behaviors of D-LinUCB and
(waiting)LinUCB
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Conclusions

e Linear Bandits are a powerful and well-understood way of solving the
exploration-exploitation trade-off in a metric space;

e The techniques have been extended to Generalized Linear models by
Filippi et al. [9]
e and to kernel regression Valko et al. [12, 13].

e Yet, including constraints and external sources of noise in real-world
application is challenging.

e Some use cases challenge the bandit model assumptions...

e ... and then it's time to open the box of MDP's (e.g. UCRL abd
KL-UCRL Auer et al. [5], Filippi et al. [10]).
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Conclusions

e Linear Bandits are a powerful and well-understood way of solving the
exploration-exploitation trade-off in a metric space;

e The techniques have been extended to Generalized Linear models by
Filippi et al. [9]
e and to kernel regression Valko et al. [12, 13].

e Yet, including constraints and external sources of noise in real-world
application is challenging.

e Some use cases challenge the bandit model assumptions...

e ... and then it's time to open the box of MDP's (e.g. UCRL abd
KL-UCRL Auer et al. [5], Filippi et al. [10]).

Thanks!

22



References i

1

[2

3

[4

[5

[6

[7]

References

Yasin Abbasi-Yadkori. Forced-exploration based algorithms for playing in bandits with large
action sets. PhD thesis, University of Alberta, 2009.

Yasin Abbasi-Yadkori, Andrds Antos, and Csaba Szepesvari. Forced-exploration based
algorithms for playing in stochastic linear bandits. In COLT Workshop on On-line Learning
with Limited Feedback, 2009.

Yasin Abbasi-Yadkori, Csaba Szepesvari, and David Tax. Improved algorithms for linear
stochastic bandits. In Advances in Neural Information Processing Systems (NIPS), pages
2312-2320, 2011.

Naoki Abe and Philip M Long. Associative reinforcement learning using linear probabilistic
concepts. In ICML, pages 3-11, 1999.

P. Auer, T. Jaksch, and R. Ortner. Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 11:1563-1600, 2010.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of
Machine Learning Research, 3(Nov):397-422, 2002.

Wei Chu, Lihong Li, Lev Reyzin, and Robert E Schapire. Contextual bandits with linear
payoff functions. In AISTATS, volume 15, pages 208-214, 2011.

23



References

[8] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under
bandit feedback. In Proceedings of Conference on Learning Theory (COLT), pages 355-366,
2008.

[9

S. Filippi, O. Cappé, A. Garivier, and Cs. Szepesvéri. Parametric bandits: The generalized
linear case. pages 586—594.

[10] Sarah Filippi, Olivier Cappé, and Aurélien Garivier. Optimism in reinforcement learning and
kullback-leibler divergence. In 2010 48th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 115-122. IEEE, 2010.

[11] Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics
of Operations Research, 35(2):395-411, 2010.

[12] Michal Valko, Nathaniel Korda, Rémi Munos, llias Flaounas, and Nelo Cristianini. Finite-time
analysis of kernelised contextual bandits. arXiv preprint arXiv:1309.6869, 2013.

[13] Michal Valko, Rémi Munos, Branislav Kveton, and Tomas Kocdk. Spectral bandits for
smooth graph functions. In International Conference on Machine Learning, pages 4654,
2014.

24



	Linear Bandits
	 Real-World Setting: Delayed Feedback

