
Linear Bandits: From Theory to Applications

Claire Vernade

DeepMind – Foundations Team
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Linear Bandits

1. In round t, observe action set At ⊂ Rd .

2. The learner chooses At ∈ At and receives Xt , satisfying

E[Xt |A1,A1, . . . ,At ,At ] = 〈At , θ∗〉 := fθ∗(At)

for some unknown θ∗.

3. Light-tailed noise:

Xt − 〈At , θ∗〉 = ηt ∼ N (0, 1)

Goal: Keep regret

Rn = E

[
n∑

t=1

max
a∈At

〈a, θ∗〉 − Xt

]
small.
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Real-World setting

Typical setting: a user, represented by its feature vector ut , shows up and

we have a finite set of (correlated) actions (a1, . . . , aK ).

Some function Φ joins these vectors pairwise to create a contextualized

action set:

∀i ∈ [K ], Φ(ut , ai ) = at,i ∈ Rd At = {at,1, . . . , at,K}.

No assumption is to be made on the joining function Φ as the bandit

may take over the decision step from that contextualized action set.

So, it is equivalent to At ∼ Π(Rd) some arbitrary distribution, or

A1, . . . ,An fixed arbitrarily by the environment.
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Toolbox of the optimist

Say, reward in round t is Xt , action in round t is At ∈ Rd :

Xt = 〈At , θ∗〉+ ηt ,

We want to estimate θ∗:regularized least-squares estimator:

θ̂t = V−1
t

t∑
s=1

AsXs ,

V0 = λI , Vt = V0 +
t∑

s=1

AsA
>
s .

Choice of confidence regions (ellipsoids) Ct :

Ct
.

=
{
θ ∈ Rd : ‖θ − θ̂t−1‖2

Vt−1
≤ βt

}
.

where, for A positive definite, ‖x‖2
A = x>Ax .
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LinUCB

“Choose the best action in the best environment amongst the plausible

ones.”

Choose Ct with suitable (βt)t and let

At = argmax
a∈A

max
θ∈Ct
〈a, θ〉 .

Or, more concretely, for each action a ∈ A, compute the ”optimistic

index”

Ut(a) = max
θ∈Ct
〈a, θ〉 .

Maximising a linear function over a convex closed set, the solution is

explicit:

At = argmax
a

Ut(a) = argmax
a
〈a, θ̂t〉+

√
βt ‖a‖V−1

t−1
.

7



Optimism in the Face of Uncertainty Principle
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Regret Bound

Assumptions:

1. Bounded scalar mean reward: |〈a, θ∗〉| ≤ 1 for any a ∈ ∪tAt .

2. Bounded actions: for any a ∈ ∪tAt , ‖a‖2 ≤ L.

3. Honest confidence intervals: There exists a δ ∈ (0, 1) such that with

probability 1− δ, for all t ∈ [n], θ∗ ∈ Ct for some choice of (βt)t≤n.

Theorem (LinUCB Regret)

Let the conditions listed above hold. Then with probability 1− δ the

regret of LinUCB satisfies

R̂n ≤

√
8dnβn log

(
dλ+ nL2

dλ

)
.
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Proof

Jensen’s inequality shows that

R̂n =
n∑

t=1

〈A∗t − At , θ〉 :=
n∑

t=1

rt ≤

√√√√n
n∑

t=1

r2
t

where A∗t
.

= argmaxa∈At
〈a, θ∗〉.

Let θ̃t be the vector that realizes the maximum over the ellipsoid:

θ̃t ∈ Ct s.t. 〈At , θ̃t〉 = Ut(At).

From the definition of LinUCB,

〈A∗t , θ∗〉 ≤ Ut(A
∗
t ) ≤ Ut(At) = 〈At , θ̃t〉 .

Then,

rt ≤ 〈At , θ̃t − θ∗〉 ≤ ‖At‖V−1
t−1
‖θ̃t − θ∗‖Vt−1 ≤ 2 ‖At‖V−1

t−1

√
βt .
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Elliptical Potential Lemma

So we now have a new upper bound,

R̂n =
n∑

t=1

rt ≤

√√√√n
n∑

t=1

r2
t ≤ 2

√√√√nβn

n∑
t=1

(1 ∧ ‖At‖2
V−1
t−1

) .

Lemma (Abbasi-Yadkori et al. (2011))

Let x1, . . . , xn ∈ Rd , Vt = V0 +
∑t

s=1 xsx
>
s , t ∈ [n], and L ≥ maxt ‖xt‖2.

Then,

n∑
t=1

(
1 ∧ ‖xt‖2

V−1
t−1

)
≤ 2 log

(
detVn

detV0

)
≤ d log

(
trace(V0) + nL2

d det1/d(V0)

)
.
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Confidence Ellipsoids

Assumptions: ‖θ∗‖ ≤ S , and let (As )s , (ηs )s be so that for any 1 ≤ s ≤ t, ηs |Fs−1 ∼ subG(1),

where Fs = σ(A1, η1, . . . ,As−1, ηs−1,As )

Fix δ ∈ (0, 1). Let
βt+1 =

√
λS +

√
2 log

(
1
δ

)
+ log

(
det Vt(λ)
λd

)
≤
√
λS +

√
2 log

(
1
δ

)
+ log

(
λd+nL2

dλ

)
,

and Ct+1 =
{
θ ∈ Rd : ‖θ̂t − θ∗‖Vt(λ) ≤ βt+1

}
.

Theorem

Ct+1 is a confidence set for θ∗ at level 1− δ:

P (θ∗ ∈ Ct+1) ≥ 1− δ .

Proof : See Chapter 20 of Bandit Algorithms (www.banditalgs.com)
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History

• Abe and Long [4] introduced stochastic linear bandits into machine

learning literature.

• Auer [6] was the first to consider optimism for linear bandits (LinRel,

SupLinRel). Main restriction: |At | < +∞.

• Confidence ellipsoids: Dani et al. [8] (ConfidenceBall2),

Rusmevichientong and Tsitsiklis [11] (Uncertainty Ellipsoid Policy),

Abbasi-Yadkori et al. [3] (OFUL).

• The name LinUCB comes from Chu et al. [7].

• Alternative routes:

• Explore then commit for action sets with smooth boundary.

Abbasi-Yadkori [1], Abbasi-Yadkori et al. [2], Rusmevichientong and

Tsitsiklis [11].

• Phased elimination

• Thompson sampling
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Summary

Theorem (LinUCB Regret)

Let the conditions listed above hold. Then with probability 1− δ the

regret of LinUCB satisfies

R̂n ≤

√√√√8dnβn log

(
trace(V0) + nL2

d det
1
d (V0)

)
= O(d

√
n).

Linear bandits are an elegant model of the exploration-exploitation

dilemma when actions are correlated.

The main ingredients of the regret analysis are:

• bounding the instantaneous regret using the definition of optimism;

• a maximal concentration inequality holding for a randomized,

sequential design;

• the Elliptical Potential Lemma.
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Real-World Setting: Delayed

Feedback



In a real-world application, rewards are delayed ...
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In a real-world application, rewards are delayed ... and censored.
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Delayed Linear Bandits

Modified setting: at round t ≥ 1,

• receive contextualized action set At = {a1, . . . , aK} and choose

action At ∈ At ,

• two random variables are generated but not observed:

Xt ∼ B(θ>At) and Dt ∼ D(τ),

• at t + Dt the reward Xt of action At is disclosed ...

• ...unless Dt > m : If the delay is too long, the reward is discarded.

New parameter: 0 < m < T is the cut-off time of the system. If the

delay is longer, the reward is never received. The delay distribution D(τ)

characterizes the proportion of converting actions: τm = p(Dt ≤ m).
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A new estimator

We now have :

Vt =
t−1∑
s=1

AsA
>
s b̃t =

t−1∑
s=1

AsXs1{Ds ≤ m}

where b̃t contains additional non-identically distributed samples:

b̃t =
t−m∑
s=1

AsXs1{Ds ≤ m}+
t−1∑

s=t−m+1

AsXs1{Ds ≤ t − s}

”Conditionally biased” least squares estimator includes every received

feedback

θ̂bt = V−1
t b̃t

Baseline: use previous estimator but discard last m steps

θ̂disc
t = V−1

t−mbt−m with E[θ̂disc
t |Ft ] ≈ τmθ
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Confidence interval and the D-LinUCB policy

We remark that

θ̂bt − τmθ = θ̂bt − θ̂disc
t+m + θ̂disc

t+m − τmθ
= θ̂bt − θ̂disc

t+m︸ ︷︷ ︸
finite bias

+ θ̂disc
t+m − τmθ︸ ︷︷ ︸

same as before

For the new Ct , we have new optimistic indices

At = argmax
a∈A

max
θ∈Ct
〈a, θ〉 .

But now, the solution has an extra (vanishing) bias term

At = argmax
a
〈a, θ̂t〉+

√
βt ‖a‖V−1

t−1
+ m ‖a‖V−2

t−1
.

D-LinUCB: Easy, straightforward, harmless modification of LinUCB, with

regret guarantees in the delayed feedback setting.
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Regret bound

Theorem (D-LinUCB Regret)

Under the same conditions as before, with V0 = λI , with probability

1− δ the regret of D-LinUCB satisfies

R̂n ≤ τ−1
m

√√√√8dnβn log

(
trace(V0) + nL2

d det
1
d (V0)

)
+

dm

(λ− 1)τ−1
m

log

(
1 +

n

d(λ− 1)

)
.
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Simulations

We fix n = 3000 and generate geometric delays with E[Dt ] = 100. In a

real setting, this would correspond to an experiment that lasts 3h, with

average delays of 6 minutes.

Then, we let the cut off vary m ∈ 250, 500, 1000, i.e. waiting time of

15min, 30min and 1h, respectively.
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Figure 1: Comparison of the simulated behaviors of D-LinUCB and

(waiting)LinUCB
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Conclusions

• Linear Bandits are a powerful and well-understood way of solving the

exploration-exploitation trade-off in a metric space;

• The techniques have been extended to Generalized Linear models by

Filippi et al. [9]

• and to kernel regression Valko et al. [12, 13].

• Yet, including constraints and external sources of noise in real-world

application is challenging.

• Some use cases challenge the bandit model assumptions...

• ... and then it’s time to open the box of MDP’s (e.g. UCRL abd

KL-UCRL Auer et al. [5], Filippi et al. [10]).

Thanks!
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algorithms for playing in stochastic linear bandits. In COLT Workshop on On-line Learning

with Limited Feedback, 2009.
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