Mixed effect model for the spatiotemporal analysis of longitudinal manifold value data

Stéphanie Allassonnière

with J.B. Schiratti, O. Colliot and S. Durrleman

Université Paris Descartes & Ecole Polytechnique
Computational Anatomy

- Represent and analyse **geometrical** elements upon which **deformations** can **act**
- Describe the observed objects as **geometrical variations** of one or several representative elements
- **Quantify** this variability inside a population

Deformable template model from Grenander

- How does the deformation act?
- What is a representative element?
- How to quantify the geometrical variability?
Important issues in atlas estimation:

- Register any new data in the «coordinates» of the reference shape:
 - Transport the available information from the representative element
 - «Registration» penalised as a function of its «normality»

- Quantify anatomical structure variability in different sub-groups

Targetted applications:

- Pathology effects
- Classification of new patients
- Early diagnostic
Computational Anatomy

One solution:

• Quantify the distance between observations using deformations

• Provide a statistical model to approximate the generation of the observed population from the atlas

• Propose a statistical learning algorithm

• Optimise the numerical estimation
Bayesian Mixed Effect model

- **First model**:
 - One observation per subject
 - Image or shape (viewed as currents)
 - Deformations either linearized or diffeomorphic
 - Homogeneous or heterogeneous populations (mixture models)
Bayesian Mixed Effect model

\[
\begin{align*}
 y_i & \sim \mathcal{N}(I_0 \circ \phi_i^{-1}, \sigma^2 I_d) \\
 \phi_i & = f(\beta_i) \\
 \beta_i & \sim \mathcal{N}(0, \Gamma_g)
\end{align*}
\]

For $1 \leq i \leq n$ subjects,
Bayesian Mixed Effect model

Observations
- T1
- DWIs
- fMRI
- T1+fMRI

Template
- Grey level images
- Probability maps

Deformation
- Linearised
- Diffeomorphic

\[y_i \sim \mathcal{N}(I_0 \circ \phi_i^{-1}, \sigma^2 I_d) \]

\[\phi_i = f(\beta_i) \]

\[\beta_i \sim \mathcal{N}(0, \Gamma_g) \]

deterministic parametrisation

Mixture of all these models

Normal distribution with full covariance matrix

For \(1 \leq i \leq n\) subjects,
Bayesian Mixed Effect model

• First model:
 – One observation per subject
 – Image or shape (viewed as currents)
 – Deformations either linearized or diffeomorphic
 – Homogeneous or heterogeneous populations (mixture models)

➢ Limitations

➢ One observation per subject
➢ Corresponding acquisition time
Longitudinal Data Analysis

• Longitudinal model:
 – Several observation per subject
 – Image, shape, etc
 – Atlas = representative trajectory and population variability
Longitudinal Data Analysis

How to learn representative trajectories of data changes from longitudinal data?

Temporal marker of progression
(e.g. time since drug injection, seeding, birth, etc..)

- Regression
 (e.g. compare measurements at same time-point)

- Learning spatiotemporal distribution of trajectories
 - Find temporal correspondences
 - Compare data at corresponding stages of progression

No temporal marker of progression
(e.g. in aging, neurodegenerative diseases, etc..)

- Linear mixed-effects models
 [Laird&Ware’82, Diggle et al., Fitzmaurice et al.]

- Needs to disentangle differences in manifold-valued data
 - (normalized data, positive matrices, shapes, etc..)
 - Dynamics of measurement changes
Spatiotemporal Statistical Model

- Statistical model including:
 - a representative trajectory of data changes
 - spatiotemporal variations in:
 - measurement values
 - pace of measurement changes

- Orthogonality condition ensures identifiability (unique space/time decomposition)

- Time is not a covariate but a random variable

Random effects:
\[\alpha_i \sim \log \mathcal{N}(0, \sigma^2_\alpha) \]
\[\tau_i \sim \mathcal{N}(0, \sigma^2_\tau) \]

Fixed effects:
\[(p_0, t_0, v_0) \quad \text{and} \quad (\sigma^2_\alpha, \sigma^2_\tau, A_1, \ldots A_K) \]

\[v_i = (A_1 \mid \ldots \mid A_K) s_i \]
\[A_k \perp v_0 \]

[Schiratti et al. IPMI’15, NIPS’15]
Spatiotemporal Statistical Model

\[y_{ij} = T_i(\psi_i(t)) + \varepsilon_{ij} \]

\[T_i(t) = \text{Exp}_{T_0(t)}(P_{t_0,t}^{T_0}(v_i)) \]

\[T_0(t) = \text{Exp}_{p_0,t_0}(v_0)(t) \]

\[\psi_i(t) = t_0 + \alpha_i(t - t_0 - \tau_i) \]

\[\alpha_i \sim \log N(0, \sigma^2_\alpha) \]

\[\tau_i \sim N(0, \sigma^2_\tau) \]

\[v_i = (A_1|\ldots|A_K) s_i \]

\[A_k \perp v_0 \]

\[(p_0, t_0, v_0) \]

\[(\sigma^2_\alpha, \sigma^2_\tau, A_1, \ldots A_K) \]

Submanifold value observations

Parallel curve

Representative trajectory

Linear time reparametrization

Hidden random variables:

Acceleration factor

Time shift

Space shift

Parameters:

Mean trajectory parametrization and prior parameter
Spatiotemporal Statistical Model

Comparison with previous work:

Interest: Parallel transport keep invariant the structure of the distribution, but updated it in time.
Spatiotemporal Statistical Model

• The straight line model \(M = \mathbb{R} \)

\[
y_{ij} = (\bar{a} \times a_i)(t_{i,j} - t_0 - \tau_i) + \bar{b} + \varepsilon_{i,j}
\]

Time at which measurement of the \(i^{th} \) subject reaches \(\bar{b} \)

\[
y_{ij} = (\bar{a} \times a_i)(t_{i,j} - t_0) + \bar{b} + b_i + \varepsilon_{i,j}
\]

Measurement of the \(i^{th} \) subject at time \(t_0 \)

Spatiotemporal Statistical Model

• The logistic curve model:

\[g(p)(u, v) = \frac{uv}{p^2(1 - p)^2} \]

\[\gamma_0(t) = 1 + \frac{(1 - p_0)/p_0}{\exp\left(-\frac{v_0}{p_0(1-p_0)} (t - t_0)\right)} \]

\[y_{ij} = \gamma_0\left(t_0 + \alpha_i(t - t_0 - \tau_i)\right) + \varepsilon_{ij} \]

• Geodesic are logistic curves

• It is not equivalent to a linear model on the logit of the observations (i.e. the Riemannian log at \(p_0 = 0.5 \)), since \(p_0 \) is estimated

• If we fix \(p_0 = 0.5 \) in our model \(\rightarrow \) end up with our previous linear case (different from Laird & Ware)
• The propagation model $M =]0, 1[^N$, $g(p)(u, v) = \sum_{k=1}^{N} \frac{u_k v_k}{p_k^2 (1 - p_k)^2}$

• Geodesics are logistic curves in each coordinate

• Parametric family of geodesics seen as a model of propagation of an effect

$$\gamma_\delta(t) = \left(\gamma_0(t), \gamma_0(t - \delta_1), \ldots, \gamma_0(t - \delta_{N-1}) \right)$$

• The parallel curve in the direction of the space-shift v_i writes

$$\left(\gamma_0 \left(t + \frac{v_{i,1}}{v_0} \right), \gamma_0 \left(t - \delta_1 + \frac{v_{i,2}}{v_0} \right), \ldots, \gamma_0 \left(t - \delta_{N-1} + \frac{v_{i,N}}{v_0} \right) \right)$$

• The parallel changes the relative timing of the effect onset across coordinates

\[\text{The effect onset across coordinates}\]
Parameter Estimation

\[y = (y_1, \ldots, y_N), \quad z = (z_1, \ldots z_N), \quad \theta = (\sigma_z^2, \sigma_e^2, A_1, \ldots, A_K, p_0, t_0, v_0) \]

- **Maximum Likelihood:**

\[
\max_{\theta} p(y|\theta) = \int p(y, z|\theta)dz
\]

- **EM:**

\[
\theta_{k+1} = \operatorname{argmax}_{\theta} \sum_{i=1}^{N} \int \log \left(\frac{p(y_i, z_i|\theta)}{p(y_i|z_i, \theta)p(z_i|\theta)} \right) p(z_i|y_i, \theta_k)dz_i
\]

- **Distribution from the curved exponential family**

\[
\log p(y_i, z_i|\theta) = \phi(\theta)^T S(y_i, z_i) - \log(C(\theta))
\]

\[
\theta_{k+1} = \operatorname{argmax}_{\theta} \left\{ \phi(\theta)^T \sum_{i=1}^{N} \int S(y_i, z_i)p(z_i|y_i, \theta_k)dz_i - N \log(C(\theta)) \right\}
\]
Parameter Estimation: stochastic algorithm

SA-EM: replaces integration by one simulation of the hidden variable: sample $z_{i,k+1}$ from $p(z_i | y_i, \theta_k)$, and a stochastic approximation of the sufficient statistics

$$\overline{S}_{k+1} = (1 - \Delta_k) \overline{S}_k + \Delta_k \left(\frac{1}{N} \sum_{i=1}^{N} S(y_i, z_{i,k+1}) \right)$$

Maximization step (unchanged)

$$\theta_{k+1} = \arg \max_{\theta} \left\{ \phi(\theta)^T \overline{S}_{k+1} - \log(C(\theta)) \right\}$$

MCMC-SAEM: replaces sampling by a single Markov Chain step

- For each coordinate p (Gibbs sampler) sample $z_i \sim p(z_i^p | z_i^g \neq p, \theta)$
- Set $z_{i,k+1}^p = \tilde{z}_i^p$ with probability $\frac{1}{\sqrt{N}} \frac{p(y_i | \tilde{z}_i, \theta)}{p(y_i | z_i, \theta)}$
- $z_{i,k+1}^p = z_{i,k}^p$ otherwise

[Delyon, Lavielle, Moulines.'99] [Allassonnière et al. 10]
Parameter Estimation: stochastic algorithm

• **Theoretical properties of the sampler:**

 Under mild conditions:
 – Drift property
 – Small set
 – Geometric ergodicity uniformly on any compact set of the parameters

• **Theoretical properties of the estimation algorithm:**

 – a.s. convergence towards the MAP estimator
 – Normal asymptotic behaviour: speed $\frac{1}{\sqrt{\Delta_k}}$
 – Normal asymptotic behaviour with optimal speed with averaging sequences $\frac{1}{\sqrt{k}}$
Model of Alzheimer’s disease progression

The average trajectory of data changes

- Neuropsychological tests
 ADAS-Gog from ADNI

- 248 subjects who converted from MCI to AD

- 6 time-points per subjects on average (min 3, max 11)

- Data points $y_{ij} \in [0, 1]$ with propagation logistic model

[Schiratti et al. IPMI’15, NIPS’15]
Model of Alzheimer’s disease progression

-1σ +1σ

Distinguish fast vs. slow progressers

Distinguish early vs. late onset individuals

[Schiratti et al. IPMI’15, NIPS’15]
Model of Alzheimer’s disease progression

Decomposition vector A_1

Decomposition vector A_2

Variability in the relative timing and ordering of the events

[Schiratti et al. IPMI’15, NIPS’15]
Model of Alzheimer’s disease progression

[Schiratti et al. IPMI’15, NIPS’15]
Model of Alzheimer’s disease progression

[Schiratti et al. IPMI’15, NIPS’15]
Model of Alzheimer’s disease progression
Model of diffusion tensors

- Geodesic in the Riemannian manifold of positive definite matrices
- Parallel transport the tensors
- Reparametrize in time
- Sample this curse
Model of diffusion tensors

- Synthetic data not generated from the model but imitating a non smooth evolution
- 100 subjects
- 5 time points in average
Model of diffusion tensors

• Fitting the model to a new patient
Comparison AD vs Controls
Comparison MCI vs Controls
Computational comparisons

- Comparison of: MCMC-SAEM - STAN - MONOLIX

- Number of iterations:
 - MCMC-SAEM: 1 000 000 (6s / 1 000 iterations)
 - STAN: 15 000 (25min / 1 000 iterations)
 - MONOLIX: 20 000 (3.5 min / 1 000 iterations)
Computational comparisons

- Comparison of: MCMC-SAEM - STAN - MONOLIX

<table>
<thead>
<tr>
<th></th>
<th>p_0</th>
<th>t_0</th>
<th>v_0</th>
<th>σ_ξ</th>
<th>σ_τ</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>True values</td>
<td>0.24</td>
<td>70</td>
<td>0.034</td>
<td>0.5</td>
<td>7</td>
<td>0.01</td>
</tr>
<tr>
<td>MCMC-SAEM</td>
<td>0.23</td>
<td>69.93</td>
<td>0.0317</td>
<td>0.52</td>
<td>6.75</td>
<td>0.01</td>
</tr>
<tr>
<td>STAN</td>
<td>0.218</td>
<td>68.66</td>
<td>0.0305</td>
<td>0.53</td>
<td>6.73</td>
<td>0.098</td>
</tr>
<tr>
<td>Monolix</td>
<td>0.37</td>
<td>71.6</td>
<td>0.0406</td>
<td>0.52</td>
<td>6.8</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Conclusion

• **Generic** statistical model to learn **spatiotemporal distribution of trajectories** on **manifolds**:
 – Calibrated on **longitudinal** data sets using **MCMC-SAEM**
 – Automatically finds **temporal correspondences** among similar events that may happen at different age/time
 – Estimates the **variability** of the data at the corresponding events

• It allows us to position disease progression within the life and history of the patient

• **Future work:**
 – Derive instances of the model for more complex manifold-valued data (*e.g.* spatially distributed data, shape data, etc..)
Thank you!