A tutorial on optimal transport
Part 1: theory, models, properties

Lénaïc Chizat
INRIA Paris (SIERRA team)

Imaging in Paris - Feb. 8th 2017
What is optimal transport?

Setting: Probability measures $P(\mathcal{X})$ on a metric space (\mathcal{X}, d).

Motive

Build a metric on $P(\mathcal{X})$ consistent with the geometry of (\mathcal{X}, d).
What is optimal transport?

Setting: Probability measures $P(\mathcal{X})$ on a metric space (\mathcal{X}, d).

Motive

Build a metric on $P(\mathcal{X})$ consistent with the geometry of (\mathcal{X}, d).

$$\mu = \delta_{x_1}, \quad \nu = \delta_{y_1}$$

$$W(\mu, \nu) = \ldots$$

$$d(x_1, y_1)$$
What is optimal transport?

Setting: Probability measures \(P(\mathcal{X}) \) on a metric space \((\mathcal{X}, d)\).

Motive

Build a metric on \(P(\mathcal{X}) \) consistent with the geometry of \((\mathcal{X}, d)\).

\[
\begin{align*}
\mu &= \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i}, \quad \nu = \frac{1}{N} \sum_{j=1}^{N} \delta_{y_j} \\
W(\mu, \nu) &= \ldots \\
&= \frac{1}{N^2} \sum_{ij} d(x_i, y_j)
\end{align*}
\]
What is optimal transport?

Setting: Probability measures $P(\mathcal{X})$ on a metric space (\mathcal{X}, d).

Motive
Build a metric on $P(\mathcal{X})$ consistent with the geometry of (\mathcal{X}, d).

$$
\mu = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i}, \quad \nu = \frac{1}{N} \sum_{j=1}^{N} \delta_{y_j}
$$

$$
W(\mu, \nu) = \ldots
$$

$$
\min_{\sigma \in \mathfrak{S}_N} \frac{1}{N} \sum_{i} d(x_i, y_{\sigma(i)})
$$
What is optimal transport?

Setting: Probability measures $P(\mathcal{X})$ on a metric space (\mathcal{X}, d).

Motive
Build a metric on $P(\mathcal{X})$ consistent with the geometry of (\mathcal{X}, d).

$$\mu \in P(\mathcal{X}), \quad \nu \in P(\mathcal{Y})$$

$$W(\mu, \nu) = \ldots$$
Origin and ramifications

Monge Problem (1781)
Move dirt from one configuration to another with least effort

\[\mu \text{ transport} \rightarrow \nu \]
Origin and ramifications

Monge Problem (1781)

Move dirt from one configuration to another with least effort

\[\mu \quad \text{transport} \quad \nu \]

Strong modelization power:

Replace “dirt” by:

- probability distribution, empirical distribution
- weighted undistinguishable particles
- density of a gas, a species, a crowd, cells.

Early universe (Brenier et al. ’08)

Color histograms (Delon et al.)

Crowd motion (Roudneff et al., 12’)

Point clouds
Aim of the tutorial

Convey that optimal transport ...

is a rich theory, useful as a theoretical and practical tool;

In part 1: theory

- essentials
- selection of properties and variants;

In part 2: practice

- numerical solvers, entropic regularization
- applications to imaging and machine learning
1. Theoretical facts
 Variational problem
 Special cases
 The metric side

2. A glimpse of applications
 Histogram & shapes processing
 Gradient flows
 Statistical learning

3. Differential properties
 Perturbations
 Wasserstein gradient

4. Unbalanced optimal transport
 Partial OT
 Wasserstein Fisher-Rao
1 Theoretical facts
 Variational problem
 Special cases
 The metric side

2 A glimpse of applications
 Histogram & shapes processing
 Gradient flows
 Statistical learning

3 Differential properties
 Perturbations
 Wasserstein gradient

4 Unbalanced optimal transport
 Partial OT
 Wasserstein Fisher-Rao
Optimal transport

Ingredients

- Two (complete, separable) metric spaces \(\mathcal{X}\) and \(\mathcal{Y}\)
- Cost function \(c : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{\infty\}\) (lower bounded, lsc)
- Two probability measures \(\mu \in P(\mathcal{X})\) and \(\nu \in P(\mathcal{Y})\)

Definition (Optimal transport problem)

\[
C(\mu, \nu) := \min_{\gamma \in \mathcal{M}_+(\mathcal{X} \times \mathcal{Y})} \left\{ \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\gamma(x, y) : \pi_x^#\gamma = \mu, \pi_y^#\gamma = \nu \right\}
\]

Probabilistic

\[
\min_{(X, Y)} \{ \mathbb{E} [c(X, Y)] : X \sim \mu \text{ and } Y \sim \nu \}
\]
Couplings

Definition (Set of couplings)

Positive measures on $\mathcal{X} \times \mathcal{Y}$ with specified marginals:

$$\Pi(\mu, \nu) := \{ \gamma \in M_+(\mathcal{X} \times \mathcal{Y}) : \pi_x^\# \gamma = \mu, \pi_y^\# \gamma = \nu \}$$

Product coupling

$$\gamma = \mu \otimes \nu$$

Deterministic coupling

$$\gamma = (\text{Id} \times T)_\# \mu$$

Generalizes: permutations, discrete matchings

Properties: convex, weakly compact
Definition (Set of couplings)

Positive measures on $\mathcal{X} \times \mathcal{Y}$ with specified marginals:

$$\Pi(\mu, \nu) := \left\{ \gamma \in M_+(\mathcal{X} \times \mathcal{Y}) : \pi_x^\# \gamma = \mu, \pi_y^\# \gamma = \nu \right\}$$

Product coupling

$$\gamma = \mu \otimes \nu$$

Generalizes: permutations, discrete matchings

Properties: convex, weakly compact

Cycle-free coupling
Duality

Theorem (Kantorovich duality)

\[
\min_{\gamma \in \mathcal{M}_+(X \times Y)} \left\{ \int_{X \times Y} c(x, y) d\gamma(x, y) : \pi^x_#\gamma = \mu, \pi^y_#\gamma = \nu \right\} \quad \text{(P)}
\]

\[
= \max_{\phi \in L^1(\mu), \psi \in L^1(\nu)} \left\{ \int_X \phi(x) d\mu(x) + \int_Y \psi(y) d\nu(y) : \phi(x) + \psi(y) \leq c(x, y) \right\} \quad \text{(D)}
\]

Interpretation: (P) centralized planification, (D) externalized
Duality

Theorem (Kantorovich duality)

\[
\begin{align*}
\min_{\gamma \in M_+(X \times Y)} & \left\{ \int_{X \times Y} c(x, y) d\gamma(x, y) : \pi_x^\# \gamma = \mu, \pi_y^\# \gamma = \nu \right\} \\
= & \max_{\phi \in L^1(\mu)} \left\{ \int_X \phi(x) d\mu(x) + \int_Y \psi(y) d\nu(y) : \phi(x) + \psi(y) \leq c(x, y) \right\}
\end{align*}
\]

Interpretation: (P) centralized planification, (D) externalized

At optimality

- \(\phi(x) + \psi(y) = c(x, y) \) for \(\gamma \) almost every \((x, y)\)
- \(\gamma \) is concentrated on a \(c \)-cyclically monotone set
Tools from convex analysis

Definition (Cyclical monotonicity)

$\Gamma \subset X \times Y$ is c-cyclical monotone iff for all $(x_i, y_i)_{i=1}^n \in \Gamma^n$

$$\sum_{i=1}^n c(x_i, y_i) \leq \sum_{i=1}^n c(x_i, y_{\sigma(i)})$$

for all permutation $\sigma \in S_n$.

![Diagram](image-url)
Tools from convex analysis

Definition (Cyclical monotonicity)

\[\Gamma \subset \mathcal{X} \times \mathcal{Y} \text{ is } c\text{-cyclical monotone iff for all } (x_i, y_i)^n_{i=1} \in \Gamma^n \]

\[\sum_{i=1}^{n} c(x_i, y_i) \leq \sum_{i=1}^{n} c(x_i, y_{\sigma(i)}) \text{ for all permutation } \sigma \in \mathcal{S}_n. \]
Tools from convex analysis

Definition (c-conjugacy)

For $\mathcal{X} = \mathcal{Y}$ and $c : \mathcal{X}^2 \to \mathbb{R}$ symmetric:

$$\phi^c(y) := \inf_{x \in \mathcal{X}} c(x, y) - \phi(x)$$

A function ϕ is c-concave iff there exists ψ such that $\phi = \psi^c$.

\[\begin{array}{c}
\mathbb{R} \\
\downarrow \\
\phi(x) \\
\mathcal{X} \\
\rightarrow \\
\mathbb{R} \\
\uparrow \\
c(\cdot, y)
\end{array}\]
Tools from convex analysis

Definition (c-conjugacy)

For $X = Y$ and $c : X^2 \to \mathbb{R}$ symmetric:

$$\phi^c(y) := \inf_{x \in X} c(x, y) - \phi(x)$$

A function ϕ is c-concave iff there exists ψ such that $\phi = \psi^c$.

- on \mathbb{R}^n, for $c(x, y) = x \cdot y$: ψ c-concave \Leftrightarrow ψ concave;
- for all ϕ, $\phi^{ccc} = \phi^c$;
- consequence:

$$C(\mu, \nu) = \max_{\phi \text{ c-concave}} \left\{ \int_X \phi(x) d\mu(x) + \int_Y \phi^c(y) d\nu(y) \right\} \quad \text{(D)}$$
Special cases

- real line
- distance cost
- quadratic cost
The real line

Theorem

If \((\mu, \nu) \in P(\mathbb{R})^2\) and \(c(x, y) = h(y - x)\) with \(h\) strictly convex

- unique optimal coupling \(\gamma^*\): the monotone rearrangement
- denoting \(F^{-1}\) the quantile functions:

\[
C(\mu, \nu) = \int_0^1 h(F^{-1}_{\mu}(s) - F^{-1}_{\nu}(s)) ds
\]

Proof. Here, \(c\)-cyclically monotone \(\iff\) increasing graph. \(\Box\)
If $c(x, y) = d(x, y)$ with d distance

- ϕ c-concave \iff ϕ 1-Lipschitz
- $\phi^c(y) = \inf_x d(x, y) - \phi(x) = -\phi(y)$
- consequence:

$$C(\mu, \nu) = \max_{\phi \text{ 1-Lipschitz}} \left\{ \int_X \phi(x) d(\mu - \nu)(x) \right\} := \|\mu - \nu\|_K \tag{D}$$
Quadratic cost

Context & reformulation

• \((\mu, \nu) \in P(\mathbb{R}^n)^2\) with finite moments of order 2
• cost \(c(x, y) := \frac{1}{2}|y - x|^2\)
• note that \(c(x, y) = (|x|^2 + |y|^2)/2 - x \cdot y\), thus solve:

\[
\max_{\gamma \in M_+(X \times Y)} \left\{ \int_{X \times Y} (x \cdot y) d\gamma(x, y) : \gamma \in \Pi(\mu, \nu) \right\} \tag{P}
\]

Theorem (Brenier)

(i) At optimality, \(\text{supp} \gamma \subset \partial \phi\), where \(\phi : \mathbb{R}^n \to \mathbb{R}\) convex.
(ii) If \(\mu\) has a density, \(T = \nabla \phi\) is the unique optimal map.

Proof. (i) \(\phi(x) + \phi^*(y) = x \cdot y\), \(\gamma\)-a.e (ii) \(\nabla \phi\) defined \(\mathcal{L}\)-a.e.
Transport of covariance

Case of a quadratic dual potential ϕ

Theorem (Affine transport map)

Let $c(x, y) = \frac{1}{2}|y - x|^2$ on \mathbb{R}^n and let $A, B \in S^n_+$. It holds

$$\min_{\text{cov}(\mu)=A, \text{cov}(\nu)=B} C(\mu, \nu) = d_b(A, B)^2$$

where d_b is the Bures (geodesic) metric on S^n_+.

- $d_b(A, B)^2 = \text{tr} A + \text{tr} B - 2 \text{tr}(A^{\frac{1}{2}}BA^{\frac{1}{2}})^{\frac{1}{2}}$
- Transport map $T = A^{-1} \# B$ (\cdot\#\cdot geometric mean).
- see, e.g. (Bhatia et al. ’17)
Wasserstein distance

Theorem

Let $d : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a metric. The function

$$W_2(\mu, \nu) := \left\{ \min_{\gamma \in M_+((\mathcal{X}^2), d)} \int_{\mathcal{X}^2} d(x, y)^2 d\gamma(x, y) : \gamma \in \Pi(\mu, \nu) \right\}^{\frac{1}{2}}$$

defines a metric on $P(\mathcal{X})$.

- W_2 metrizes weak convergence + 2-nd order moments;
- if (\mathcal{X}, d) is a geodesic space, so is $(P(\mathcal{X}), W_2)$.

Figure: A constant speed geodesic for W_2 on $P(\mathbb{R}^2)$
Consider μ, ν probability measures on \mathbb{R}^n.

Variational characterization of geodesics (Benamou-Brenier)

$$W_2^2(\mu, \nu) = \min_{(\rho_t, \nu_t)_{t \in [0,1]}} \int_0^1 \left(\int_{\mathbb{R}^n} |\nu_t(x)|^2 d\rho_t(x) \right) dt$$

s.t. $\partial_t \rho_t = -\text{div}(\rho_t \nu_t)$

and $(\rho_0, \rho_1) = (\mu, \nu)$

Consequences

- minimizers are geodesics;
- convex in variables $(\rho, \nu \rho)$;
- W_2 is similar to a Riemannian metric.
Properties of OT

- rich duality, with concepts from convex analysis
- real line, distance cost, quadratic cost

Properties of the distance W_2 on \mathbb{R}^n

- optimal plans supported on $\partial \phi$ with $\phi : \mathbb{R}^n \to \mathbb{R}$ convex;
- the space $(\mathcal{P}(\mathbb{R}^n), W_2)$ is a complete geodesic space;
- some explicit cases (real line, linear maps).
Optimal transport
Lénaïc Chizat

Introduction

Theory
Variational problem
Special cases
The metric side

Applications
Histograms
Gradient flows
Statistical learning

Differentiability
Perturbations
Wasserstein gradient

Unbalanced
Partial OT
Wasserstein Fisher-Rao

Conclusion

Outline

1 Theoretical facts
Variational problem
Special cases
The metric side

2 A glimpse of applications
Histogram & shapes processing
Gradient flows
Statistical learning

3 Differential properties
Perturbations
Wasserstein gradient

4 Unbalanced optimal transport
Partial OT
Wasserstein Fisher-Rao
Histogram & shapes processing

Color transfer

\[\text{color} + \text{target} = \text{OT or unbalanced OT} \]

Barycenters

and much more

- PCA (Seguy, Cuturi’15)
- regression (Bonneel et al’16)

(Benamou et al’15)
Objective: characterize certain evolution EDP as gradient flows of some functional $F : P(\mathbb{R}^n) \to \mathbb{R}$ in the Wasserstein space:

$$\partial_t \mu_t + \text{div}(\mu_t \nu_t) = 0 \quad \text{with} \quad \nu_t = \nabla F'(\mu_t).$$

Interest

- theoretical: existence, uniqueness, convergence...
- numerical: intrinsic mass conservation and positivity

Crowd motions (Roudneff-Chupin et al.'14)
Statistical learning

- W_p loss for regression (Frogner et al.’15):
 Learn predictor $f_\theta : X \to Y := P(\{1, \ldots, k\})$

$$\min_{\theta \in \mathbb{R}^d} \mathbb{E}_{(X,Y) \sim \mu} \left[W_2^2(f_\theta(X), Y) \right].$$

- W_p loss for generative models:
 Given $\mu \in P(X)$, $\nu \in P(Y)$, learn map $f_\theta : X \to Y$

$$\min_{\theta \in \mathbb{R}^d} W_2^2((f_\theta)^\# \mu, \nu)$$

- Barycenters for multiscale learning (Srivastava et al.’17), transfer learning (Courty et al.’17), convergence of Langevin MC (Dalalyan’17)...
And much more...

- **applied analysis**: incompressible flows (Euler), sticky particules
- **metric geometry**: Ricci curvature, perimetric inequalities
- **mathematical physics**: density functional theory, Schröedinger bridge
- **mathematical economy**: matching problems, principal agent, MFG, finance (martingale transport)...
And much more...

- **applied analysis**: incompressible flows (Euler), sticky particles
- **metric geometry**: Ricci curvature, perimetric inequalities
- **mathematical physics**: density functional theory, Schrödinger bridge
- **mathematical economy**: matching problems, principal agent, MFG, finance (martingale transport)

Recurring needs:

- differential properties
- unbalanced OT
Optimal transport

Lénaïc Chizat

Introduction

Theory
 Variational problem
 Special cases
 The metric side

Applications
 Histograms
 Gradient flows
 Statistical learning

Differentiability
 Perturbations
 Wasserstein gradient

Unbalanced
 Partial OT
 Wasserstein Fisher-Rao

Conclusion

Outline

1. Theoretical facts
 Variational problem
 Special cases
 The metric side

2. A glimpse of applications
 Histogram & shapes processing
 Gradient flows
 Statistical learning

3. Differential properties
 Perturbations
 Wasserstein gradient

4. Unbalanced optimal transport
 Partial OT
 Wasserstein Fisher-Rao
Reminder

Optimal transport between \(\mu, \nu \in P(\mathbb{R}^n) \) with cost \(c \):

\[
C(\mu, \nu) = \sup_{(\varphi, \psi) \text{ admissible}} \int_{\mathbb{R}^n} \varphi \, d\mu + \int_{\mathbb{R}^n} \psi \, d\nu
\]
Vertical perturbations

Reminder

Optimal transport between $\mu, \nu \in P(\mathbb{R}^n)$ with cost c:

$$C(\mu, \nu) = \sup_{(\varphi, \psi) \text{ admissible}} \int_{\mathbb{R}^n} \varphi \, d\mu + \int_{\mathbb{R}^n} \psi \, d\nu$$

Perturbed marginal: $\mu + \epsilon \delta$

Vertical perturbations

Let δ a signed measure with $\int \delta = 0$. If optimal φ unique, then:

$$\frac{d}{d \epsilon} C(\mu + \epsilon \delta, \nu) |_{\epsilon = 0} = \int_{\mathbb{R}^n} \varphi \, d\delta$$

If φ nonunique (up to a constant) \Rightarrow subdifferential.
Reminder

Optimal transport between $\mu, \nu \in P(\mathbb{R}^n)$ with cost c:

$$C(\mu, \nu) = \sup_{(\varphi, \psi) \text{ admissible}} \int_{\mathbb{R}^n} \varphi \, d\mu + \int_{\mathbb{R}^n} \psi \, d\nu$$

Vertical perturbation

Let δ a signed measure with $\int \delta = 0$. If optimal φ unique,

$$\frac{d}{d\epsilon} C(\mu + \epsilon \delta, \nu)\bigg|_{\epsilon=0} = \int_{\mathbb{R}^n} \varphi \, d\delta$$

If φ nonunique (up to a constant) \Rightarrow subdifferential.
Horizontal perturbations

Reminder

Optimal transport between $\mu, \nu \in P(\mathbb{R}^n)$ with cost c:

$$C(\mu, \nu) = \inf_{\gamma \text{ admissible}} \int_{(\mathbb{R}^n)^2} c(x, y) \, d\gamma(x, y)$$
Horizontal perturbations

Reminder

Optimal transport between \(\mu, \nu \in P(\mathbb{R}^n) \) with cost \(c \):

\[
C(\mu, \nu) = \inf_{\gamma \text{ admissible}} \int_{(\mathbb{R}^n)^2} c(x, y) \, d\gamma(x, y)
\]

Perturbed cost: \(c(x + \epsilon v(x), y) \approx c(x, y) + \epsilon \nabla_x c(x, y) \cdot v(x) \)
Horizontal perturbations

Reminder

Optimal transport between $\mu, \nu \in P(\mathbb{R}^n)$ with cost c:

$$C(\mu, \nu) = \inf_{\gamma \text{ admissible}} \int_{(\mathbb{R}^n)^2} c(x, y) \, d\gamma(x, y)$$

Perturbed cost: $c(x + \epsilon v(x), y) \approx c(x, y) + \epsilon \nabla_x c(x, y) \cdot v(x)$

Horizontal perturbation

Let $v : \mathbb{R}^n \to \mathbb{R}^n$ a velocity field. If optimal γ unique,

$$\frac{d}{d\epsilon} C((\text{id} + \epsilon v) \# \mu, \nu)|_{\epsilon=0} = \int_{(\mathbb{R}^n)^2} \nabla_x c(x, y) \cdot v(x) \, d\gamma(x).$$

Corresponds to the vertical perturbation $\partial_\epsilon \mu = -\text{div}(v \mu)$
Special case of \mathcal{W}_2

Setting: quadratic cost on \mathbb{R}^n, $\nu: \mathbb{R}^n \to \mathbb{R}^n$ velocity field.

Differentiability of \mathcal{W}_2

If unique optimal transport plan γ, then

$$
\frac{d}{d\epsilon} \mathcal{W}_2^2((\text{id} + \epsilon \nu)\# \mu, \nu)|_{\epsilon=0} = \int_{(\mathbb{R}^n)^2} 2(y - x) \cdot \nu(x) d\gamma(x, y)
$$

Next talk: regularized \mathcal{W}_2, always differentiable.
Special case of W_2

Setting: quadratic cost on \mathbb{R}^n, $\nu : \mathbb{R}^n \to \mathbb{R}^n$ velocity field.

Differentiability of W_2

If unique optimal transport plan γ, then

$$\frac{d}{d\epsilon} W_2^2((\text{id} + \epsilon \nu)\#\mu, \nu)|_{\epsilon = 0} = \int_{(\mathbb{R}^n)^2} 2(y - x) \cdot \nu(x)d\gamma(x, y)$$

Next talk: regularized W_2, always differentiable.
Euclidean Gradient

Goal: defining the gradient though metric quantities only.
Euclidean Gradient

Goal: defining the gradient though metric quantities only.

Proximal operator

Let $F : \mathbb{R}^n \to \mathbb{R}$ a (semiconvex) function. The proximal operator assigns to each $x \in \mathbb{R}^n$

$$x^\tau := \arg \min_{y \in \mathbb{R}^n} \left(\frac{|x - y|^2}{2\tau} + F(y) \right)$$

Definition (Euclidean gradient)

$$\text{grad} F(x) := \lim_{\tau \to 0} \frac{(x - x^\tau)}{\tau} \in \mathbb{R}^n$$
Wasserstein Gradient

Proximal map: let $F : P(\mathbb{R}^n) \rightarrow \mathbb{R}$ a functional, $\mu \in P^{ac}(\mathbb{R}^n)$.

$$\mu^\tau = \arg \min_{\nu \in P(\mathbb{R}^n)} \frac{W_2^2(\mu, \nu)}{2\tau} + F(\nu)$$
Wasserstein Gradient

Proximal map: let $F : P(\mathbb{R}^n) \to \mathbb{R}$ a functional, $\mu \in P^{ac}(\mathbb{R}^n)$.

\[
\mu^\tau = \arg \min_{\nu \in P(\mathbb{R}^n)} \frac{W_2^2(\mu, \nu)}{2\tau} + F(\nu)
\]

OT with quadratic cost: with φ dual variable w.r.t. μ^τ it holds

\[
\mu = T \# \mu^\tau \quad \text{where} \quad T(x) = x - \nabla \varphi(x).
\]
Wasserstein Gradient

Proximal map: let $F : P(\mathbb{R}^n) \rightarrow \mathbb{R}$ a functional, $\mu \in P^{ac}(\mathbb{R}^n)$.

$$\mu^\tau = \arg \min_{\nu \in P(\mathbb{R}^n)} \frac{W_2^2(\mu, \nu)}{2\tau} + F(\nu)$$

OT with quadratic cost: with φ dual variable w.r.t. μ^τ it holds

$$\mu = T\#\mu^\tau$$

where $T(x) = x - \nabla \varphi(x)$.

First order optimality condition (vertical perturbation):

$$\frac{\varphi}{\tau} + F'(\mu^\tau) = cst \Rightarrow \frac{id - T}{\tau} + \nabla F'(\mu^\tau) = 0$$
Wasserstein Gradient

Proximal map: let $F : P(\mathbb{R}^n) \to \mathbb{R}$ a functional, $\mu \in P^{ac}(\mathbb{R}^n)$.

$$\mu^\tau = \arg \min_{\nu \in P(\mathbb{R}^n)} \frac{W_2^2(\mu, \nu)}{2\tau} + F(\nu)$$

OT with quadratic cost: with φ dual variable w.r.t. μ^τ it holds

$$\mu = T \# \mu^\tau \quad \text{where} \quad T(x) = x - \nabla \varphi(x).$$

First order optimality condition (vertical perturbation):

$$\frac{\varphi}{\tau} + F'(\mu^\tau) = \text{cst} \Rightarrow \frac{\text{id} - T}{\tau} + \nabla F'(\mu^\tau) = 0$$

Wasserstein gradient (limit $\tau \to 0$)

$$\text{grad} \ F(\mu) = \text{div}(\nabla F'(\mu) \mu)$$
Wasserstein Gradient

Proximal map: let $F : P(\mathbb{R}^n) \to \mathbb{R}$ a functional, $\mu \in P^{ac}(\mathbb{R}^n)$.

$$\mu^\tau = \arg \min_{\nu \in P(\mathbb{R}^n)} \frac{W_2^2(\mu, \nu)}{2\tau} + F(\nu)$$

OT with quadratic cost: with ϕ dual variable w.r.t. μ^τ it holds

$$\mu = T\#\mu^\tau \quad \text{where} \quad T(x) = x - \nabla \phi(x).$$

First order optimality condition (vertical perturbation):

$$\frac{\phi}{\tau} + F'(\mu^\tau) = \text{cst} \Rightarrow \frac{\text{id} - T}{\tau} + \nabla F'(\mu^\tau) = 0$$

Wasserstein gradient (limit $\tau \to 0$)

$$\text{grad} \ F(\mu) = \text{div}(\nabla F'(\mu)\mu)$$

Fundamental exemple: with $F(\mu) = \int \mu \log(d\mu/d\mathcal{L})$, one has

$$\text{grad} \ F(\mu) = \Delta \mu.$$
1 Theoretical facts
 Variational problem
 Special cases
 The metric side

2 A glimpse of applications
 Histogram & shapes processing
 Gradient flows
 Statistical learning

3 Differential properties
 Perturbations
 Wasserstein gradient

4 Unbalanced optimal transport
 Partial OT
 Wasserstein Fisher-Rao
Unbalanced OT

OT comes with an intrinsic constraint:

$$\mu(\mathcal{X}) = \nu(\mathcal{Y})$$

What if $\mu(\mathcal{X}) \neq \nu(\mathcal{Y})$?
Unbalanced OT

OT comes with an intrinsic constraint:

$$\mu(X) = \nu(Y)$$

What if $$\mu(X) \neq \nu(Y)$$?

Unbalanced OT:

- often comes up in applications
- normalization is generally a poor choice
- are there approaches that stand out?
Unbalanced OT

OT comes with an intrinsic constraint:

\[\mu(\mathcal{X}) = \nu(\mathcal{Y}) \]

What if \(\mu(\mathcal{X}) \neq \nu(\mathcal{Y}) \)?

Unbalanced OT:

- often comes up in applications
- normalization is generally a poor choice
- are there approaches that stand out?

Strategy

- preserve key properties of optimal transport
- combine two geometries:
 - *horizontal* (transport) and *vertical* (linear)
Optimal partial transport

Setting: \(\mu \in M_+(\mathcal{X}) \) and \(\nu \in M_+(\mathcal{Y}) \) nonnegative measures.

Variational problem

Choose \(0 < m \leq \min\{\mu(\mathbb{R}^n), \nu(\mathbb{R}^n)\} \) and solve

\[
\min_{\gamma} \int c(x, y) d\gamma(x, y)
\]

subject to

\[
\pi^x_\# \gamma \leq \mu
\]
\[
\pi^y_\# \gamma \leq \nu
\]
\[
\gamma(\mathbb{R}^n \times \mathbb{R}^n) = m
\]

- simple modification of the OT problem
- “equivalent” formulations: dynamic, entropy-transport
- alternatively, add a sink/source reachable at a certain cost
Wasserstein Fisher-Rao

Setting: \(\mu \in M_+(\mathcal{X}) \) and \(\nu \in M_+(\mathcal{Y}) \) nonnegative measures.

Definition

The natural generalization of \(W_2 \) to this setting is

\[
\hat{W}_2^2(\mu, \nu) = \min_{\gamma \in M_+(\mathcal{X} \times \mathcal{Y})} KL(\pi^x_\# \gamma | \mu) + KL(\pi^y_\# \gamma | \nu) + \int c_\ell(x, y) d\gamma(x, y)
\]

where \(c_\ell(x, y) = -\log \cos^2(\min\{|y - x|, \pi/2\}) \).
Setting: $\mu \in M_+(\mathcal{X})$ and $\nu \in M_+(\mathcal{Y})$ nonnegative measures.

Definition

The natural generalization of W_2 to this setting is

$$\widehat{W}_2^2(\mu, \nu) = \min_{\gamma \in M_+(\mathcal{X} \times \mathcal{Y})} KL(\pi^x_\# \gamma | \mu) + KL(\pi^y_\# \gamma | \nu) + \int c_\ell(x, y) d\gamma(x, y)$$

where $c_\ell(x, y) = -\log \cos^2(\min\{|y-x|, \pi/2\})$.

Main properties

- geodesic space, Riemannian-like structure
- growth and displacement intertwined
- various explicit formulations: lifted problem, dynamic problem with velocity and rate of growth...

References: (Liero et al’15), (Monsaingeon et al’15), (Chizat et al’15), my PhD thesis.
End of part 1

In part 1: theory
- essentials
- selection of properties and variants;

In part 2: practice
- numerical solvers, entropic regularization
- applications to imaging and machine learning

Reference textbooks
- Santambrogio, *OT for applied mathematicians*
- Villani, *OT, Old and New*
- Ambrosio, Gigli, Savaré, *Gradient flows in metric spaces and in the space of probability measures*
- Peyré and Cuturi, *Computational OT* (upcoming)